The value of the integral ∫π6π21 + sin

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

341.

Suppose M = 0π/2cosxx + 2dx, N = 0π/4sinxcosxx + 12dx. Then, the values of (M - N) equals

  • 3π + 2

  • 2π - 4

  • 4π - 2

  • 2π + 4


342.

The value of the integral

- 11x2013exx2 +cosx + 1exdx is equal to

  • 0

  • 1 - e- 1

  • 2e- 1

  • 21 - e- 1


343.

The value of I = 0π/4tann + 1xdx + 120π/2tann + 1x2dx is

  • 1n

  • n + 22n + 1

  • 2n - 1n

  • 2n - 33n - 2


344.

The value of the integral

12exlogex + x + 1xdx

  • e21 + loge2

  • e2 - e

  • e21 + loge2 - e

  • e2 - e1 + loge2


Advertisement
345.

If [a] denote the greatest integer which is less than or equal to a. Then, the value of the integral - π2π2sinxcosxdx is

  • π2

  • π

  • - π

  • - π2


346.

The value of integral π6π3sinx - xcosxxx + sinxdx

  • loge2π + 32π + 33

  • logeπ + 322π + 33

  • loge2π + 332π + 3

  • loge22π + 33π +3


347.

If F(x) = 0xcost1 +t2dt, 0  x  2π. Then,

  • F is decreasing in π2, 3π2 and decreasing in 0, π2 and 3π2, 2π

  • F is increasing in (0, π) and decreasing in ( π, 2π).

  • Fis increasing in (π, 2π) and decreasing in ( 0, π).

  • Fis increasing in (0, π2) and 3π2, 2π and decreasing in ( π2, 3π2).


Advertisement

348.

The value of the integral π6π21 +sin2x + cos2xsinx + cosxdx is equal to

  • 16

  • 8

  • 4

  • 1


D.

1

π6π21 +sin2x + cos2xsinx + cosxdx

= π6π21 +2sinxcosx + 2cos2x - 1sinx + cosxdx

π6π2 2cosxsinx + cosxsinx + cosxdx

π6π22cosxdx

2sinxπ6π2

2sinπ2 - sinπ6

21 - 12 = 2 × 12 = 1


Advertisement
Advertisement
349.

The value of the integral 0π211 +tanx101dx is equal to

  • 1

  • π6

  • π8

  • π4


350.

The integrating factor of the differential equation

3xlogexdydx + y = 2logex is given by

  • logex3

  • logelogex

  • logex

  • logex13


Advertisement