The integrating factor of the differential equation3xlogexdydx&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

341.

Suppose M = 0π/2cosxx + 2dx, N = 0π/4sinxcosxx + 12dx. Then, the values of (M - N) equals

  • 3π + 2

  • 2π - 4

  • 4π - 2

  • 2π + 4


342.

The value of the integral

- 11x2013exx2 +cosx + 1exdx is equal to

  • 0

  • 1 - e- 1

  • 2e- 1

  • 21 - e- 1


343.

The value of I = 0π/4tann + 1xdx + 120π/2tann + 1x2dx is

  • 1n

  • n + 22n + 1

  • 2n - 1n

  • 2n - 33n - 2


344.

The value of the integral

12exlogex + x + 1xdx

  • e21 + loge2

  • e2 - e

  • e21 + loge2 - e

  • e2 - e1 + loge2


Advertisement
345.

If [a] denote the greatest integer which is less than or equal to a. Then, the value of the integral - π2π2sinxcosxdx is

  • π2

  • π

  • - π

  • - π2


346.

The value of integral π6π3sinx - xcosxxx + sinxdx

  • loge2π + 32π + 33

  • logeπ + 322π + 33

  • loge2π + 332π + 3

  • loge22π + 33π +3


347.

If F(x) = 0xcost1 +t2dt, 0  x  2π. Then,

  • F is decreasing in π2, 3π2 and decreasing in 0, π2 and 3π2, 2π

  • F is increasing in (0, π) and decreasing in ( π, 2π).

  • Fis increasing in (π, 2π) and decreasing in ( 0, π).

  • Fis increasing in (0, π2) and 3π2, 2π and decreasing in ( π2, 3π2).


348.

The value of the integral π6π21 +sin2x + cos2xsinx + cosxdx is equal to

  • 16

  • 8

  • 4

  • 1


Advertisement
349.

The value of the integral 0π211 +tanx101dx is equal to

  • 1

  • π6

  • π8

  • π4


Advertisement

350.

The integrating factor of the differential equation

3xlogexdydx + y = 2logex is given by

  • logex3

  • logelogex

  • logex

  • logex13


D.

logex13

Given, 3xlogexdydx + y = 2logex

Dividing both sides by 3xloge(x), we get

      dydx + 13xlogexy = 2logex3xlogex dydx + 13xlogexy = 23x

which is linear form dydx + Py = Q, where P and Q are function of x and the integrating factor is given by the following formula ePdx

         IF = e13xlogexdxPut logex = t     1xdx = dt       IF = e13dtt = e13logt                = elogt13                = t13                 = logex13


Advertisement
Advertisement