The value of the integral ∫0π4sinx + cosx3 + sin2xdx is equal to
loge2
loge3
14loge2
14loge3
D.
Let I = ∫0π4sinx + cosx3 + sin2xdx
= ∫0π4sinx + cosx3 + 2sinxcosxdx= ∫0π4- sinx + cosxsinx - cosx2 - 4dx ...(i)Put sinx - cosx = t⇒ cosx + sinxdx = dtwhen x = 0 ⇒ t = - 1and x = π4 ⇒ t = 0∴ Eq.(i) becomes,
I = - ∫- 10dtt2 - 4 = - 14logt - 2t + 2- 10
= - 14log1 - log3 = 14log3
The value of the integral ∫- 221 + 2sinxexdx is equal to
0
e2 - 1
2(e2 - 1)
1
The value of the integral ∫15x - 3 + 1 - xdx is equal to
4
8
12
16
Let [x] denote the greatest integer less than or equal to x, then the value of the integral ∫- 11x - 2xdx is equal to
3
2
- 2
- 3
Prove that
The value of ∫- 22xcosx + sinx + 1dx
∫π16πsinxdx is equal to
32
30
28
∫cos2xcosxdx is equal to
2sinx + logsecx + tanx + C
2sinx - logsecx - tanx + C
2sinx - logsecx + tanx + C
2sinx + logsecx - tanx + C
∫sin8x - cos8x1 - 2sin2xcos2xdx
- 12sin2x + C
12sin2x + C
12sinx + C
- 12sinx + C
The value of ∫0πsin50xcos49xdx is
π4
π2