The value of the integral ∫0π4sinx + cosx3 + sin2xdx is equal to
loge2
loge3
14loge2
14loge3
The value of the integral ∫- 221 + 2sinxexdx is equal to
0
e2 - 1
2(e2 - 1)
1
The value of the integral ∫15x - 3 + 1 - xdx is equal to
4
8
12
16
C.
∫15x - 3 + 1 - xdx= ∫15x - 3dx + ∫151 - xdx= ∫13- x - 3dx + ∫35x - 3dx + ∫15- 1 - xdx= ∫133 - xdx + ∫35x - 3dx + ∫15x - 1dx= 3x - x2213 + x22 - 3x35 + x22 - x15= 3 × 3 - 92 - 3 × 1 - 12 + 5 × 52 - 3 × 5 - 3 × 32 - 3 × 3 + 5 × 52 - 5 - 12 - 1= 9 - 92 - 3 - 12 + 252 - 15 - 92 - 9 + 252 - 5 - - 12= 92 - 52 - 52 + 92 + 152 + 12= 9 - 5 - 5 + 9 + 15 + 12= 242= 12
Let [x] denote the greatest integer less than or equal to x, then the value of the integral ∫- 11x - 2xdx is equal to
3
2
- 2
- 3
Prove that
The value of ∫- 22xcosx + sinx + 1dx
∫π16πsinxdx is equal to
32
30
28
∫cos2xcosxdx is equal to
2sinx + logsecx + tanx + C
2sinx - logsecx - tanx + C
2sinx - logsecx + tanx + C
2sinx + logsecx - tanx + C
∫sin8x - cos8x1 - 2sin2xcos2xdx
- 12sin2x + C
12sin2x + C
12sinx + C
- 12sinx + C
The value of ∫0πsin50xcos49xdx is
π4
π2