Evaluate the following integral∫- 12xsinπxdx from Ma

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

361.

2xf'(x) + f(x)log2dx is

  • 2xf'(x) + C

  • 2xf(x) + C

  • 2x(log(2))f(x) + C

  • log(2)f(x) + C


 Multiple Choice QuestionsShort Answer Type

Advertisement

362.

Evaluate the following integral

- 12xsinπxdx


       I = - 12xsinπxdx = - 11xsinπxdx = 12xsinπxdx         = 201xsinπxdx + 12xsinπxdx         = 201xsinπxdx - 12xsinπxdx = 2I1 - I2      I1 = 01xsinπxdx = - xcosπxπ01 + 01cosπxπdx          = - xcosπxπ + sinπxπ201 = 1πand I2 = 12xsinπxdx = - xcosπxπ + sinπxπ212            = - 2π + 0 + - 1π = - 3πSo, 2I1 - I2 = 2π + 3π = 5π - 12xsinπxdx = 5π


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

363.

logx3xdx is equal to

  • 13logx2 + c

  • 23logx2 + c

  • 23logx2 + c

  • 13logx2 + c


364.

ex2x - 2x2dx

  • exx + c

  • ex2x2 + c

  • 2exx + c

  • 2exx2 + c


Advertisement
365.

The value of the integral dxex + e- x2

  • 12e2x +1 + c

  • 12e- 2x +1 + c

  • - 12e2x +1- 1 + c

  • 14e2x -1 + c


366.

1 + cosxdx is equal to

  • 22cosx2 + c

  • 22sinx2 + c

  • 2cosx2 + c

  • 2sinx2 + c


367.

The value of integral 0π2sin5xdx is

  • 415

  • 85

  • 815

  • 45


368.

If ddx{f(x)} = g(x), then abf(x)g(x)dx is equal to

  • 12f2(b) - f2a

  • 12g2(b) - g2a

  • f(b) - f(a)

  • 12f(b2) - fa2


Advertisement
369.

If I1 = 03πfcos2xdx

and I2 = 0πfcos2xdx, then

  • I1 = I2

  • 3I1 = I2

  • I1 = 3I2

  • I1 = 5I2


370.

The value of I = - π2π2sinxdx is

  • 0

  • 2

  • - 2

  • - 2 < 1 < 2


Advertisement