If I1 = ∫03πfcos2xdxand I2 = ∫0&pi

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

361.

2xf'(x) + f(x)log2dx is

  • 2xf'(x) + C

  • 2xf(x) + C

  • 2x(log(2))f(x) + C

  • log(2)f(x) + C


 Multiple Choice QuestionsShort Answer Type

362.

Evaluate the following integral

- 12xsinπxdx


 Multiple Choice QuestionsMultiple Choice Questions

363.

logx3xdx is equal to

  • 13logx2 + c

  • 23logx2 + c

  • 23logx2 + c

  • 13logx2 + c


364.

ex2x - 2x2dx

  • exx + c

  • ex2x2 + c

  • 2exx + c

  • 2exx2 + c


Advertisement
365.

The value of the integral dxex + e- x2

  • 12e2x +1 + c

  • 12e- 2x +1 + c

  • - 12e2x +1- 1 + c

  • 14e2x -1 + c


366.

1 + cosxdx is equal to

  • 22cosx2 + c

  • 22sinx2 + c

  • 2cosx2 + c

  • 2sinx2 + c


367.

The value of integral 0π2sin5xdx is

  • 415

  • 85

  • 815

  • 45


368.

If ddx{f(x)} = g(x), then abf(x)g(x)dx is equal to

  • 12f2(b) - f2a

  • 12g2(b) - g2a

  • f(b) - f(a)

  • 12f(b2) - fa2


Advertisement
Advertisement

369.

If I1 = 03πfcos2xdx

and I2 = 0πfcos2xdx, then

  • I1 = I2

  • 3I1 = I2

  • I1 = 3I2

  • I1 = 5I2


C.

I1 = 3I2

I130πf2cosxdx = 3I2

             period is π


Advertisement
370.

The value of I = - π2π2sinxdx is

  • 0

  • 2

  • - 2

  • - 2 < 1 < 2


Advertisement