The value of ∫- π2π2x3 + xcosx + tan5x + 1dx is equal to
0
2
π
None of these
C.
Let
I = ∫- π2π2x3 + xcosx + tan5x + 1dx
Since, x3, x cos(x) and tan5(x) are odd functions,therefore
∫- π2π2x3dx = 0∫- π2π2xcosxdx = 0and ∫- π2π2tan5xdx = 0∴ I = ∫- π2π21dx = x- π2π2 = π
The value of the integral ∫- π4π4sin- 4xdx is
- 83
32
83
∫x + 2x + 42exdx is equal to
exxx + 4 + C
exx + 2x + 4 + C
exx - 2x + 4 + C
ex2xexx + 4 + C
The value of ∫35x2x2 - 4dx
2 - loge157
2 + loge157
2 + 4loge3 - 4loge7 + 4loge5
2 - tan-157
∫0∞dxx + x2 + 13 is equal to
38
18
- 38
If for every integer n, ∫nn + 1fxdx = n2, then the value of ∫- 24f(x)dx is
16
14
19
The value of integral ∫0πxfsinxdx is
π∫0π2fsinxdx
π4∫0πfsinxdx
limx→∞∫02xxexdxe4x2 equals
∞
12
The value of ∫- 231 - x2dx, is
13
14/3
7/3
28/3
∫1tanx + cotx + secx + cscxdx is equal to
12sinx + cosx + x + C
12sinx - cosx - x + C
12cosx - x + sinx + C
None of the above