The value of ∫- π2π2x3 + xcosx + tan5x + 1dx is equal to
0
2
π
None of these
The value of the integral ∫- π4π4sin- 4xdx is
- 83
32
83
∫x + 2x + 42exdx is equal to
exxx + 4 + C
exx + 2x + 4 + C
exx - 2x + 4 + C
ex2xexx + 4 + C
The value of ∫35x2x2 - 4dx
2 - loge157
2 + loge157
2 + 4loge3 - 4loge7 + 4loge5
2 - tan-157
∫0∞dxx + x2 + 13 is equal to
38
18
- 38
If for every integer n, ∫nn + 1fxdx = n2, then the value of ∫- 24f(x)dx is
16
14
19
The value of integral ∫0πxfsinxdx is
π∫0π2fsinxdx
π4∫0πfsinxdx
limx→∞∫02xxexdxe4x2 equals
∞
12
The value of ∫- 231 - x2dx, is
13
14/3
7/3
28/3
D.
We have,
1 - x2 = x2 - 1 = - x2 - 1, if - 1 < x < 1x2 - 1, otherwise∴ I = ∫- 231 - x2dx⇒ I = ∫- 21x2 - 1dx + ∫- 11- x2 - 1dx + ∫13x2 - 1dx⇒ I = x33 - x- 2- 1 - x33 - x- 11 - x33 - x13
⇒ I = - 1/3 + 1 - - 8/3 + 2 - 13 - 1 - - 1/3 + 1 + 273 - 3 - 1/3 - 1⇒ I = 43 + 4/3 + 203 = 283
∫1tanx + cotx + secx + cscxdx is equal to
12sinx + cosx + x + C
12sinx - cosx - x + C
12cosx - x + sinx + C
None of the above