If l (m,n) = ∫01tm1 + tndt, then the expressio

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

401.

If 0log1 + x21 + x2dx = k01log1 + x1 + x2dx, then k is equal to

  • 4

  • 8

  • π

  • 2π


402.

0xsintdt, where x  2, 2n + 1π, n  N, is equal to

  • 4n - 1 - cos(x)

  • 4n - sin(x)

  • 4n - cos(x)

  • 4n + 1 - cos(x)


403.

Let I101exdx1 + x and I201x2dxex32 - x3 Then, I1I2 is equal to

  • 13e

  • 3e

  • e3

  • 3e


404.

52525 - x23x4dx is equal to

  • π3

  • 2π3

  • π6

  • 5π6


Advertisement
405.

dxcosx + 3sinx equals

  • 12logtanx2 + π12 + C

  • 13logtanx2 - π12 + C

  • logtanx2 + π6 + C

  • 12logtanx2 - π6 + C


406.

0π2sin2x . logtanxdx

  • 0

  • 2

  • 4

  • 7


407.

If x = 1cosx1 - cosx1 + sinxcosx1 + sinx + cosxsinxsinx1, then 0π4xdx is equal to

  • 14

  • 12

  • 0

  • - 14


408.

02πsinx + sinxdx is equal to

  • 0

  • 4

  • 8

  • 1


Advertisement
409.

The value of 02x2dx, where [.] is the greatest integer function, is

  • 2 - 2

  • 2 + 2

  • 2 - 1

  • 2 - 2


Advertisement

410.

If l (m,n) = 01tm1 + tndt, then the expression for l (m, n) in terms of l (m + 1, n + 1) is

  • 2nm + 1 - nm + 1 . l m + 1, n - 1

  • nm + 1 . l m + 1, n - 1

  • 2nm + 1 + nm + 1 . l m + 1, n - 1

  • mn + 1 . l m + 1, n - 1


A.

2nm + 1 - nm + 1 . l m + 1, n - 1

We have, l m, n = l = 01tm1 + tndt l m, n = 1 + tn . tm + 1m + 10 1- nm + 1011 + tn - 1 . tm + 1dt

               = 2nm + 1 - nm + 1 . lm + 1, n - 1


Advertisement
Advertisement