If ∫1xdttt2 - 1 = π6, then x can be equal to
23
3
2
None of these
A.
∫1xdπttt2 - 1 = π6⇒ sec-1t1x = π6⇒ sec-1x - sec-11 = π6⇒ sec-1x - 0 = π6⇒ x = secπ6⇒ x = 23
∫2 - sin2x1 - cos2xexdx is equal to
- excotx + c
excotx + c
2excotx + c
- 2excotx + c
If In = ∫sinnxdx, then nIn - n - 1In - 2 equals
sinn - 1xxcosx
cosn - 1xsinx
- sinn - 1xcosx
- cosn - 1xsinx
If I = ∫x51 + x3dx, then I is equal to
291 + x352 + 231 + x332 + c
logx + 1 + x3 + c
logx - 1 + x3 + c
291 + x332 - 231 + x312 + c
The value of ∫0aa - xxdx is
a2
a4
πa2
πa4
The value of ∫14x - 3dx is equal to :
1
52
12
32
The value of ∫0∞dxa2 + x2 is equal to
π2
π2a
πa
12a
The value of the integral ∫ex1 - x1 + x22dx is
ex1 - x1 + x2 + c
ex1 + x1 + x2
ex1 + x2 + c
ex1 - x + c
If g(x) = ∫0xcos4tdt, then gx + π is equsl to
g(x) + g(π)
g(x) - g(π)
g(x) . g(π)
gxgπ
∫sin6x + cos6x + 3sin2xcos2xdx is equal to
x + C
32sin2x + C
- 32cos2x + C
13sin3x - cos3x + C