∫x31 + x435dx is equal to
1 + x3465 + c
1 + x4365 + c
581 + x4365 + c
161 + x436 + c
If u = - f''θsinθ + f'θcosθ and v = f''θcosθ + f'θsinθ, then ∫dudθ2 + dvdθ212dθ is equal to
fθ - f''θ + c
fθ + f''θ + c
f'θ + f''θ + c
f'θ - f''θ + c
∫e6logex - e5logexe4logex - e3logexdx is equal to
x33 + c
x22 + c
x23 + c
- x33 + c
∫ex1 - x1 + x22dx is equal to
ex1 - x1 + x2 + c
ex11 + x2 + c
ex1 + x1 + x2
ex1 - x1 + x22 + c
∫x4 - 1x2x4 + x2 + 112dx is equal to
x4 + x2 + 1x + c
x2x4 + x2 + 1 + c
xx4 + x2 + 132 + c
∫cosx - sinx1 + 2sinxcosxdx is equal to
- 1cosx - sinx + c
cosx + sinxcosx - sinx + c
- 1sinx + cosx
xsinx + cosx + c
∫1xlogexedx is equal to
loge1 - logex + c
logelogeex - 1 + c
logelogex - 1 + c
loge1 + logex + c
The value of ∫1e10logexdx is equal to
10loge10e
10e - 1loge10e
10eloge10e
The value of ∫- 24x + 1dx is equal to
12
14
13
16
If ∫x + 22x2 + 6x + 5dx = P ∫4x + 62x2 + 6x + 5dx + 12∫dx2x2 + 6x + 5, then the values of P is
2
C.
Let x + 2 = ddx2x2 + 6x + 5 + B
A⇒ x + 2 = A4x + 6 + B⇒ x + 2 = 4Ax + 6A + B⇒ 4A = 1⇒ A = 14 6A + B = 2⇒ B = 12∴ ∫x + 22x2 + 6x + 5dx= ∫144x + 6 + 122x2 + 6x + 5dx= 14∫4x + 62x2 + 6x + 5dx + 12∫12x2 + 6x + 5dxcomparing it with ∫x + 22x2 + 6x + 5dx= P∫4x + 62x2 + 6x + 5dx + 12∫dx2x2 + 6x + 5⇒ P = 14