∫0π2dx1 + tan3x is equal to from Mathema

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

501.

Let f(x) = x2 - 2. If 36fxdx = 3fc for some c  (3, 6),  then the value of c is equal to

  • 12

  • 21

  • 19

  • 17


502.

0π2sin2x1 + 2cos2xdx is equal to

  • 12log2

  • log2

  • 12log3

  • log3


Advertisement

503.

0π2dx1 +tan3x is equal to

  • 1

  • π

  • π2

  • π4


D.

π4

Let I = 0π2dx1 + tan3x I = 0π2cos3xsin3x + cos3xdx    ...i I = 0π2cos3π2 - xsin3π2 - x + cos3π2 - xdx        0afx = 0afa - xdx I = 0π2sin3xcos3x + sin3xOn adding Eqs. (i) and (ii), we get 2I = 0π2sin3x + cos3xsin3x + cos3xdx     = 0π21dx = x0π2 2I = π2  I = π4


Advertisement
504.

If f(x) = 1xsin2t2dt, then the value of limx0fπ +x - fπx is equal to

  • 14

  • 12

  • 34

  • 1


Advertisement
505.

1x2x4 + 134dx is equal to

  • - 1 + x434x + C

  • - 1 + x4142x + C

  • - 1 + x414x + C

  • - 1 + x414x2 + C


506.

1 + xexsin2xexdx is equal to

  • - cotex + C

  • tanxex + C

  • tanex + C

  • - cotxex + C


507.

xex1 + x2dx is equal to

  • - exx + 1 + C

  • exx + 1 + C

  • xexx + 1 + C

  • - xexx + 1 + C


508.

exsinx + 2cosxsinxdx is equal to

  • excosx + C

  • exsinx + C

  • exsin2x + C

  • exsin2x + C


Advertisement
509.

1 + cosxdx is equal to

  • 2sinx2 + C

  • 2sinx2 + C

  • 12sinx2 + C

  • 22sinx2 + C


510.

x2 - 1xdx is equal to

  • x2 - 1 - sec-1x + C

  • x2 - 1 + tan-1x + C

  • x2 - 1 + sec-1x + C

  • x2 - 1 - tanx + C


Advertisement