Let f(x) = x2 - 2. If ∫36fxdx = 3fc for some c ∈ (3, 6), then the value of c is equal to
12
21
19
17
∫0π2sin2x1 + 2cos2xdx is equal to
12log2
log2
12log3
log3
∫0π2dx1 + tan3x is equal to
1
π
π2
π4
If f(x) = ∫1xsin2t2dt, then the value of limx→0fπ + x - fπx is equal to
14
34
∫1x2x4 + 134dx is equal to
- 1 + x434x + C
- 1 + x4142x + C
- 1 + x414x + C
- 1 + x414x2 + C
∫1 + xexsin2xexdx is equal to
- cotex + C
tanxex + C
tanex + C
- cotxex + C
∫xex1 + x2dx is equal to
- exx + 1 + C
exx + 1 + C
xexx + 1 + C
- xexx + 1 + C
∫exsinx + 2cosxsinxdx is equal to
excosx + C
exsinx + C
exsin2x + C
∫1 + cosxdx is equal to
2sinx2 + C
12sinx2 + C
22sinx2 + C
D.
Let I = ∫1 + cosxdx = ∫2cos2x2dx = ∫2cosx2dx = 2sinx212 + C = 22sinx2 + C
∫x2 - 1xdx is equal to
x2 - 1 - sec-1x + C
x2 - 1 + tan-1x + C
x2 - 1 + sec-1x + C
x2 - 1 - tanx + C