∫0π2xsinxdx is equal to : from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

551.

13xdx is :

  • 13xlog13 + c

  • 13x + 1 + c

  • 14x + c

  • 14x + 1 + c


552.

0π2sin2xlogtanxdx

  • π

  • π2

  • 1

  • 0


Advertisement

553.

0π2xsinxdx is equal to :

  • π4

  • π2

  • π

  • 1


D.

1

0π2xsinxdx   = - xcosx0π2 + 0π2cosxdx   = 0 + sinx0π2   = 1


Advertisement
554.

x2ax + b- 2dx is equal to :

  • 2a2x - balogax +b + c

  • 2a2x - balogax +b - x2aax + b

  • 2a2x + balogax +b - x2aax + b + c

  • 2a2x + balogax +b - x2aax + b + c


Advertisement
555.

If f(t) is an odd function, then 0xftdt is :

  • an odd function

  • an even function

  • neither even nor odd

  • 0


556.

e- logxdx is equal to :

  • e- log(x) + C

  • - xe- log(x) + C

  • elog(x) + C

  • logx + C


557.

ax2a- x - axdx is equal to :

  • 1logasin-1ax + c

  • 1logatan-1ax + c

  • 2a- x - ax + c

  • logax - 1 + c


558.

If g(x) = fx - f- x2  defined over [- 3, 3], and f(x) = 2x2 - 4x + 1, then - 33gxdx is equal to :

  • 0

  • 4

  • - 4

  • 8


Advertisement
559.

sinxsinx - adx is equal to :

  • xcosa - sinalogsinx - a + c

  • xsina + c

  • xsina + sinalogsinx - a + c

  • xcosa + sinalogsinx - a + c


560.

f'xfxlogfxdx is equal to :

  • fxlogfx

  • f(x) . log(f(x)) + c

  • loglogfx + c

  • 1loglogfx + c


Advertisement