∫13xdx is :
13xlog13 + c
13x + 1 + c
14x + c
14x + 1 + c
∫0π2sin2xlogtanxdx
π
π2
1
0
∫0π2xsinxdx is equal to :
π4
∫x2ax + b- 2dx is equal to :
2a2x - balogax + b + c
2a2x - balogax + b - x2aax + b
2a2x + balogax + b - x2aax + b + c
If f(t) is an odd function, then ∫0xftdt is :
an odd function
an even function
neither even nor odd
∫e- logxdx is equal to :
e- log(x) + C
- xe- log(x) + C
elog(x) + C
logx + C
D.
∫e- logxdx= ∫elog1/xdx= ∫1xdx= logx + C
∫ax2a- x - axdx is equal to :
1logasin-1ax + c
1logatan-1ax + c
2a- x - ax + c
logax - 1 + c
If g(x) = fx - f- x2 defined over [- 3, 3], and f(x) = 2x2 - 4x + 1, then ∫- 33gxdx is equal to :
4
- 4
8
∫sinxsinx - adx is equal to :
xcosa - sinalogsinx - a + c
xsina + c
xsina + sinalogsinx - a + c
xcosa + sinalogsinx - a + c
∫f'xfxlogfxdx is equal to :
fxlogfx
f(x) . log(f(x)) + c
loglogfx + c
1loglogfx + c