∫π6π3dx1 + tanx is equal to :
π12
π2
3π2
2π
∫- ππsin4xsin4x + cos4xdx is equal to :
π
A.
Let I = ∫- ππsin4xdxsin4x + cos4x I = 4∫0πsin4xsin4x + cos4xdx I = 4∫0π2sin4xsin4x + cos4xdx ...i I = 4∫0π2cos4xsin4x + cos4xdx ...ii 2I = 4∫0π21.dx = 2π ∵by adding Eqs. (i) and (ii)⇒ I = π
The value of 2sinx2sinx + 2cosxdx is :
2
π4
If f is continuous function, then :
∫- 22fxdx = ∫02fx - f- xdx
∫- 352fxdx = ∫- 610fx - 1dx
∫- 35fxdx = ∫- 44fx - 1dx
∫- 35fxdx = ∫- 26fx - 1dx
If ∫xx + 1dx = Ax + Btan-1x + c, then :
A = 1, B = 1
A = 1, B = 2
A = 2, B = 2
A = 2, B = - 2
∫x3sintan-1x41 + x8dx is equal to :
14costan-1x4 + c
14sintan-1x4 + c
- 14costan-1x4 + c
14sec-1tan-1x4 + c
In = ∫0π4tannxdx, then limn→∞nIn + In + 2 equals :
12
1
∞
zero
If ∫xfxdx = fx2, then f(x) is equal to :
ex
e- x
log(x)
ex22
∫02x2dx is :
2 - 2
2 + 2
2 - 1
- 2 - 3 + 5
∫0πcosxdx is equal to :
- 2
- 1