∫π6π3dx1 + tanx is equal to :
π12
π2
3π2
2π
∫- ππsin4xsin4x + cos4xdx is equal to :
π
The value of 2sinx2sinx + 2cosxdx is :
2
π4
If f is continuous function, then :
∫- 22fxdx = ∫02fx - f- xdx
∫- 352fxdx = ∫- 610fx - 1dx
∫- 35fxdx = ∫- 44fx - 1dx
∫- 35fxdx = ∫- 26fx - 1dx
If ∫xx + 1dx = Ax + Btan-1x + c, then :
A = 1, B = 1
A = 1, B = 2
A = 2, B = 2
A = 2, B = - 2
∫x3sintan-1x41 + x8dx is equal to :
14costan-1x4 + c
14sintan-1x4 + c
- 14costan-1x4 + c
14sec-1tan-1x4 + c
In = ∫0π4tannxdx, then limn→∞nIn + In + 2 equals :
12
1
∞
zero
If ∫xfxdx = fx2, then f(x) is equal to :
ex
e- x
log(x)
ex22
∫02x2dx is :
2 - 2
2 + 2
2 - 1
- 2 - 3 + 5
D.
∫02x2dx= ∫01x2dx + ∫12x2dx + ∫23x2dx + ∫32x2dx= ∫010dx + ∫121dx + ∫222dx + ∫323dx= x12 + 2x23 + 3x32= 2 - 1 + 23 - 22 + 6 - 33= - 2 - 3 + 5
∫0πcosxdx is equal to :
- 2
- 1