The value of ∫x21 + x6dx is
x3 + c
13tan-1x3 + c
log(1 + x3) + c
None of these
∫1 - cosxcsc2xdx is equal to
tanx2 + c
- cotx2 + c
2tanx2 + c
- 2cotx2 + c
∫cosx1 + sinxdx is equal to
sinx2 - cosx2
sinx2 + cosx2
2sinx2 - cosx2 + c
2sinx2 + cosx2 + c
∫13coslogxxdx is equal to
1
coslog3
sinlog3
π4
∫0π2sinx + cosx1 + sin2xdx is equal to
- π2
π2
π
∫12ex1x - 1x2dx is equal to
e - e22
e22 - e
e22 + e
e22 - 2
The value of ∫- ππsin3xcos2xdx is equal to
2
3
0
∫x - 1x + 1dx is equal to
2x2 + 1 + sin-1x + c
x2 - 1 - sin-1x + c
2x2 - 1 + sin-1x + c
x2 - 12 + sin-1x + c
The value of ∫- 11logx - 1x + 1dx is
4
Considering four sub-intervals, the value of ∫042xdx by Simpson's rule is
648
653
6212
618
B.
Here, a = 0, b = 4, n = 4
h = b - an = 4 - 04 = 1
By Simpson's rule
∫022xdx = h3y0 + y4 + 4y1 + y3 + 2y2
= 131 + 16 + 42 + 8 + 24= 1317 + 40 + 8 = 653