If I1 = ∫sin-1xdx and I2 = ∫sin-11 - x2dx, then
I1 = I2
I2 = π2I1
I1 + I2 = π2x
I1 + I2 = π2
∫sinθ + cosθsin2θdθ is equal to
logcosθ - sinθ + sin2θ + c
logsinθ - cosθ + sin2θ + c
sin-1sinθ - cosθ + c
sin-1sinθ + cosθ + c
∫π6π3dx1 + tanx is equal to
π12
π2
π6
π4
If f is a continuous function, then
∫- 22f(x)dx = ∫02f(x) - f(- x)dx
∫- 352f(x)dx = ∫- 610fx - 1dx
∫- 35fxdx = ∫- 44fx - 1dx
∫- 35fxdx = ∫- 26fx - 1dx
∫1 + sinx1 + cosxdx is equal to
xtanx2 + c
log1 + cosx + c
cotx2 + c
logx + sinx + c
∫cos3x . elogsinxdx is equal to
- sin4x4 + c
- cos4x4 + c
esinx4 + c
None of the above
The value of ∫0π2cos3x + 12cosx - 1dx is
2
1
12
0
B.
Let I = ∫0π2cos3x + 12cosx - 1dx= ∫0π2cos3x - cos3π32cosx - cosπ3dx= ∫0π24cos3x - 3cosx - 4cos3π3 - 3cosπ32cosx - cosπ3dx= 2∫0π2cos3x - cos3π3cosx - cosπ3dx - 32∫0π2cosx - cosπ3cosx - cosπ3dx= 2∫0π2cos2x + cos2π3 + cosxcosπ3 - 32∫0π21dx= ∫0π21 + cos2x + 12 + cosxdx - 3π4= 3π4 + 1 - 3π4 = 1
The value of ∫01tan-12x - 11 + x - x2dx is
- 1
By the application of Simpson's one - third rule for numerical integration, with two subintervals, the value of ∫01dx1 + x is
1736
1725
2536
1724
∫xe - 1 + ex - 1xe + exdx is equal to
logxe + ex + c
elogxe + ex + c
1elogxe + ex + c