The value of ∫1 + secxdx is
sin-12sinx + C
2sin-12sinx/2 + C
2sin-12sinx + C
2sin-12x/2 + C
The value of ∫x2 + 1x4 + x2 + 1dx is
13tan-1x - 1/x3 + C
123logx - 1/x - 3x - 1/x + 3 + C
tan-1x + 1/x3 + C
tan-1x - 1/x3 + C
The value of ∫01x21 - x232dx is
132
π8
π16
π32
D.
Let I = ∫01x21 - x232dxlet x = sinθ ⇒ dx = cosθdθ I = ∫0π2sin2θcos2θ32 . cosθdθ = ∫0π2sin4θ . cos4θBy Gamma function, I = Γ2 +12Γ4 + 122Γ2 + 4 + 22 = Γ32Γ522Γ4 = 12Γ . 32 . 12 . Γ122 . 3 . 2 = 3 . π . π2 . 2 . 2 . 2 . 3 . 2 = π32
The value of ∫0∞x1 + xx2 + 1dx is
2π
π4
∫18 + 2x - x2dx is equal to
13sin-1x - 13 + c
sin-1x + 13 + c
13sin-1x + 13 + c
sin-1x - 13 + c
∫4ex - 252ex - 5dx = Ax + Blog2ex - 5 + c, then
A = 5 and B = 3
A = 5 and B = - 3
A = - 5 and B = 3
A = - 5 and B = - 3
∫- π2π2log2 - sinx2 + sinxdx is equal to
1
3
2
0
∫x2 + 2ax + tan-1xx2 + 1dx is equal to
loga . ax + tan-1x + c
x + tan-1xlogloga + c
ax + tan-1xloga + c
logax + tan-1x + c
If ∫fxlogsinxdx = loglogsinx + c, then f(x) is equal to
cot(x)
tan(x)
sec(x)
csc(x)
∫0π2secxnsecxn +cscxndx is equal to
π2
π3
π6