∫- π2π2log2 - sinx2 + sinxdx&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

671.

The value of 1 + secxdx is

  • sin-12sinx +C

  • 2sin-12sinx/2 +C

  • 2sin-12sinx +C

  • 2sin-12x/2 +C


672.

The value of x2 + 1x4 +x2 + 1dx is

  • 13tan-1x - 1/x3 + C

  • 123logx - 1/x - 3x - 1/x + 3 + C

  • tan-1x + 1/x3 + C

  • tan-1x - 1/x3 + C


673.

The value of 01x21 - x232dx is

  • 132

  • π8

  • π16

  • π32


674.

The value of 0x1 + xx2 + 1dx is

  • 2π

  • π4

  • π16

  • π32


Advertisement
675.

18 + 2x - x2dx is equal to

  • 13sin-1x - 13 + c

  • sin-1x + 13 + c

  • 13sin-1x + 13 + c

  • sin-1x - 13 + c


676.

4ex - 252ex - 5dx = Ax + Blog2ex - 5 + c, then

  • A = 5 and B = 3

  • A = 5 and B = - 3

  • A = - 5 and B = 3

  • A = - 5 and B = - 3


Advertisement

677.

- π2π2log2 - sinx2 + sinxdx is equal to

  • 1

  • 3

  • 2

  • 0


D.

0

We have, - π2π2log2 - sinx2 + sinxdxLet         fx = log2 - sinx2 + sinxThen, f- x = log2 - sin- x2 + sin- x                    = log2 + sinx2 - sinx = log2 - sinx2 + sinx- 1                    = - log2 - sinx2 + sinx = - fxThen, f(x) is an odd function. - π2π2f(x)dx = 0               If f(x) is an odd function, then - aaf(x)dx = 0


Advertisement
678.

x2 + 2ax + tan-1xx2 + 1dx is equal to

  • loga . ax + tan-1x + c

  • x + tan-1xlogloga + c

  • ax + tan-1xloga + c

  • logax + tan-1x + c


Advertisement
679.

If fxlogsinxdx = loglogsinx + c, then f(x) is equal to

  • cot(x)

  • tan(x)

  • sec(x)

  • csc(x)


680.

0π2secxnsecxn +cscxndx is equal to

  • π2

  • π3

  • π4

  • π6


Advertisement