The value of ∫012sin-1x1 - x232dx is
π2 - log2
π4 - 12log2
π4 + 12log2
π - 12log2
Integral of 12 + cosx
13tan-112tanx + C
23tan-113tanx2 + C
- sinxlog2 + cosx + C
sinxlog2 + cosx + C
∫dxx4 + x6 is equal to
- 1 + x2x + C
1 + x2x + C
- 1 - x2x + C
- x2 - 1x + C
If ∫sin-1xcos-1xdx = f-1xπ2x - xf-1x - 21 - x2
π21 - x2 + 2x + C, then
f(x) = sin(x)
f(x) = cos(x)
f(x) = tan(x)
None of these
If ∫0πxfsin2x + sec2xdx = k∫0π2fsin2x + sec2xdx, then the value of k is
π2
π
- π2
B.
We have, ∫0πxfsin2x + sec2xdx = k∫0π2fsin2x + sec2xdxLet I = ∫0πxfsin2x + sec2xdx ...i = ∫0ππ - xfsin2π - x + sec2π - xdx = ∫0ππ - xfsin2x + sec2x ...iiOn adding Eqs. (i) and (ii), we get 2I = π∫0πfsin2x + sec2x⇒ 2I = 2π∫0π2fsin2x + sec2x⇒ I = π∫0π2fsin2x + sec2x
On comparing with given integral, we get k = π.
∫x + 2x2 + 3x + 3x + 1dx is equa to
23tan-1xx + 1 + C
23tan-1x3x + 1 + C
23tan-1xx + 12 + C
∫sin-1xa + xdx is equal to
tan-1xa + xa + C
atan-1xa - xa + C
atan-1xa . a + xa + C
atan-1xa . a + xa - xa + C
limn→∞1n1n + 1 + 2n + 2 + ... + 3n4n is equal to
log(4)
- log(4)
1 - log(4)
The value of the integral ∫0π2sin2xsinx + cosxdx is equal to
2log2
22 + 1
log2 + 1
None of the above
∫dx9 + 16sin2x is equal to
13tan-13tanx5 + c
15tan-1tanx15 + c
115tan-1tanx5 + c
115tan-15tanx3 + c