The value of the integral ∫0π2sin2xsinx +&thinsp

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

691.

The value of 012sin-1x1 - x232dx is

  • π2 - log2

  • π4 - 12log2

     

  • π4 + 12log2

  • π - 12log2


692.

Integral of 12 + cosx

  • 13tan-112tanx +C

  • 23tan-113tanx2 +C

  • - sinxlog2 + cosx + C

  • sinxlog2 + cosx + C


693.

dxx4 + x6 is equal to

  • - 1 + x2x + C

  • 1 + x2x + C

  • - 1 - x2x + C

  • - x2 - 1x + C


694.

If sin-1xcos-1xdx = f-1xπ2x - xf-1x - 21 - x2

π21 - x2 + 2x +C, then

  • f(x) = sin(x)

  • f(x) = cos(x)

  • f(x) = tan(x)

  • None of these


Advertisement
695.

If 0πxfsin2x + sec2xdx = k0π2fsin2x + sec2xdx, then the value of k is

  • π2

  • π

  • - π2

  • None of these


696.

x + 2x2 +3x +3x + 1dx is equa to

  • 23tan-1xx + 1 + C

  • 23tan-1x3x + 1 + C

  • 23tan-1xx + 12 + C

  • None of these


697.

sin-1xa + xdx is equal to

  • tan-1xa + xa + C

  • atan-1xa - xa + C

  • atan-1xa . a +xa + C

  • atan-1xa . a + xa - xa + C


698.

limn1n1n + 1 + 2n + 2 + ... + 3n4n is equal to

  • log(4)

  • - log(4)

  • 1 - log(4)

  • None of these


Advertisement
Advertisement

699.

The value of the integral 0π2sin2xsinx +cosxdx is equal to

  • 2log2

  • 22 + 1

  • log2 + 1

  • None of the above


D.

None of the above

Let    I = 0π2sin2xsinx +cosxdx      ...iNow, I = 0π2sin2π2 - xsinπ2 - x +cosπ2 - xdx    I = 0π2cos2xsinx +cosxdx      ...iiOn adding Eqs. (i) and (ii), we get2I = 0π2sin2x + cos2xsinx +cosxdx    = 0π21sinx +cosxdx    = 120π21cosx - π4dx    = 120π2secx - π4dx    = 12logsecx - π4 + tanx - logπ40π2    = 12log2 + 1 - log2 - 1    = 12log2 + 12 - 1    = 12log2 + 12    = 2log2 + 1

Hence, option (d) is correct.


Advertisement
700.

dx9 + 16sin2x is equal to

  • 13tan-13tanx5 + c

  • 15tan-1tanx15 + c

  • 115tan-1tanx5 + c

  • 115tan-15tanx3 + c


Advertisement