The solution of the differential equation xdy - ydx = x2&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

701.

x2dxxsinx + cosx2 is equal to

  • sinx + cosxxsinx + cosx + c

  • xsinx - cosxxsinx + cosx + c

  • sinx - xcosxxsinx + cosx + c

  • None of these


702.

If f(x) = Asinπx2 + B, f'12 = 2 and 01fxdx = 2Aπ, then A and B are

  • π2, π2

  • 2π, 3π

  • 0, - 4π

  • 4π, 0


703.

Let g(x) = 0xftdt, where f is such that 12  fx  1 for t [0, 1] and 0  ft  12 for t  [1, 2]. Then, g(2) satisfies the inequality

  • - 32  g2 < 12

  • 0  g2 < 2

  • 12  g2 < 32

  • 2 < g(2) < 4


704.

dxsinx - cosx + 2 is equal to

  • - 12tanx2 + π8 + C

  • 12tanx2 + π8 + C

  • 12cotx2 + π8 + C

  • 12cotx2 + π8 + C


Advertisement
705.

ex2sinx2 + π4dx is equal to

  • ex2cosx2 + C

  • 2ex2cosx2 + C

  • ex2sinx2 + C

  • 2ex2sinx2 + C


Advertisement

706.

The solution of the differential equation xdy - ydx = x2 + y2dx is

  • y - x2 + y2 = Cx2

  • y + x2 + y2 = Cx2

  • y + x2 + y2 + Cx2 = 0

  • None of the above


B.

y + x2 + y2 = Cx2

xdy - ydx = x2 + y2dx           xdy = y + x2 + y2dx           dydx = y + x2 + y2xIt is homogeneous equationPut       y = vx  dydx = v + xdvdxv + xdvdx = vx + x1 + v2x = v + 1 + v21   xdvdx = 1 + v2 dv1 + v2 = dxx              logv + 1 + v2 = logx + logC        logyx + x2 + y2x = logx + logC y + x2 + y2 -  logx = logx + logC            logy + x2 + y2 = logx2C                     y + x2 + y2 = Cx2


Advertisement
707.

If 0t2x fxdx = 25t5,t > 0, then f425 is

  • 25

  • 52

  • - 25

  • None of these


708.

The value of interal I = sinx + cosx1 + sin2xdx is

  • 1 + cos2x

  • x

  • x

  • 1 + 2x


Advertisement
709.

The value of interal - 3232sin3xcos3xdx is

  • 0

  • 1/2

  • 1

  • None of these


710.

xe - 1 + ex - 1xe + exdx is equal to

  • 1elogxe - ex + c

  • 1elogxe + ex + c

  • 1elogex - xe + c

  • None of the above


Advertisement