∫x2dxxsinx + cosx2 is equal to
sinx + cosxxsinx + cosx + c
xsinx - cosxxsinx + cosx + c
sinx - xcosxxsinx + cosx + c
None of these
If f(x) = Asinπx2 + B, f'12 = 2 and ∫01fxdx = 2Aπ, then A and B are
π2, π2
2π, 3π
0, - 4π
4π, 0
Let g(x) = ∫0xftdt, where f is such that 12 ≤ fx ≤ 1 for t ∈ [0, 1] and 0 ≤ ft ≤ 12 for t ∈ [1, 2]. Then, g(2) satisfies the inequality
- 32 ≤ g2 < 12
0 ≤ g2 < 2
12 ≤ g2 < 32
2 < g(2) < 4
∫dxsinx - cosx + 2 is equal to
- 12tanx2 + π8 + C
12tanx2 + π8 + C
12cotx2 + π8 + C
∫ex2sinx2 + π4dx is equal to
ex2cosx2 + C
2ex2cosx2 + C
ex2sinx2 + C
2ex2sinx2 + C
The solution of the differential equation xdy - ydx = x2 + y2dx is
y - x2 + y2 = Cx2
y + x2 + y2 = Cx2
y + x2 + y2 + Cx2 = 0
None of the above
If ∫0t2x fxdx = 25t5,t > 0, then f425 is
25
52
- 25
A.
∫0t2x fxdx = 25t5, t > 0,On differentiating both sides w.r.t. t, we get t2ft22t = 2t4 ∵ by Leibrintz rule⇒ ft2 = tPut t = 25 then, we get⇒ f425 = 25
The value of interal I = ∫sinx + cosx1 + sin2xdx is
1 + cos2x
x
1 + 2x
The value of interal ∫- 3232sin3xcos3xdx is
0
1/2
1
∫xe - 1 + ex - 1xe + exdx is equal to
1elogxe - ex + c
1elogxe + ex + c
1elogex - xe + c