∫dxx2 + 4x + 13 is equal to
logx2 + 4x + 13 + c
13tan-1x + 23 + c
log2x + 4 + c
2x + 4x2 + 4x + 132 + c
The value of ∫23x + 1x2x - 1dx is
log169 + 16
log169 - 16
2log2 - 16
log43 - 16
B.
Let I = ∫23x + 1x2x - 1dx = ∫23- 2x - 1x2 + 2x - 1dx = - 2logx + 1x + 2logx - 123 = 2logx - 1x + 1x23 = 2log23 - log12 + 13 - 12 = 2log43 - 16 = log169 - 16
∫0π4cosx - sinxdx + ∫π45π4sinx - cosxdx + ∫2ππ4cosx - sinxdx
is equal to
2 - 2
22 - 2
32 - 2
42 - 2
∫ax2a- x - axdx is equal to
1logasin-1ax + c
1logatan-1ax + c
2a- x - ax + c
logax - 1 + c
The value of ∫01x4 + 1x2 + 1dx is
163 - 4π
163π + 4
163 + 4π
163π - 4
∫ex2 + exex + 1dx is equal to
logex + 1ex + 2 + c
logex + 2ex + 1 + c
ex + 1ex + 2 + c
ex + 2ex + 1 + c
∫32 x3 logx2dx is equal to
8x4(log(x))2 + c
x48logx2 - 4logx + 1 + c
8logx2 - 4logx + c
x38logx2 - 2logx + c
∫cosx - 1sinx + 1exdx is equal to :
excosx1 + sinx + c
c - exsinx1 + sinx
c - ex1 + sinx
c - excosx1 + sinx
If ∫fxdx = gx + c, then ∫f-1xdx is equal to :
xf-1(x) + c
f(g-1(x)) + c
xf-1(x) - g(f-1(x)) + c
g-1(x) + c
The value of ∫12dxx1 + x4 is :
14log1732
14log3217
log172
14log172