If ∫fxdx = gx + c, then 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

721.

dxx2 +4x + 13 is equal to

  • logx2 + 4x + 13 +c

  • 13tan-1x + 23 + c

  • log2x +4 +c

  • 2x +4x2 + 4x + 132 + c


722.

The value of 23x + 1x2x - 1dx is

  • log169 + 16

  • log169 - 16

  • 2log2 - 16

  • log43 - 16


723.

0π4cosx - sinxdx + π45π4sinx - cosxdx + 2ππ4cosx - sinxdx

is equal to

  • 2 - 2

  • 22 - 2

  • 32 - 2

  • 42 - 2


724.

ax2a- x - axdx is equal to

  • 1logasin-1ax + c

  • 1logatan-1ax + c

  • 2a- x - ax + c

  • logax - 1 + c


Advertisement
725.

The value of 01x4 + 1x2 +1dx is

  • 163 - 4π

  • 163π + 4

  • 163 + 4π

  • 163π - 4


726.

ex2 + exex + 1dx is equal to

  • logex + 1ex + 2 + c

  • logex + 2ex + 1 + c

  • ex + 1ex + 2 + c

  • ex + 2ex + 1 + c


727.

32 x3 logx2dx is equal to

  • 8x4(log(x))2 + c

  • x48logx2 - 4logx + 1 + c

  • 8logx2 - 4logx + c

  • x38logx2 - 2logx + c


728.

cosx - 1sinx + 1exdx is equal to :

  • excosx1 + sinx + c

  • c - exsinx1 + sinx

  • c - ex1 + sinx

  • c - excosx1 + sinx


Advertisement
Advertisement

729.

If fxdx = gx +c, then f-1xdx is equal to :

  • xf-1(x) + c

  • f(g-1(x)) + c

  • xf-1(x) - g(f-1(x)) + c

  • g-1(x) + c


C.

xf-1(x) - g(f-1(x)) + c

Let I = f-1xdx                   ...iand       f(x)dx = gx +c     ...ii From (i) let f-1x = u   x = fu dx = f'udu    I = uf'uduIntegration by parts, we get        I = ufu - fudu        I = ufu - gu + c       usin Eq. (ii) On putting u = f-1x, fu = xWe get, I = xf-1x - gf-1x + c


Advertisement
730.

The value of 12dxx1 + x4 is :

  • 14log1732

  • 14log3217

  • log172

  • 14log172


Advertisement