The value of the integral ∫abxdxx + a + b - x is :
π
12b - a
π/2
b - a
∫0π2cotxcotx + tanxdx is equal to :
1
- 1
π2
π4
∫0π2xsin2xcos2xdx is equal to :
π232
π216
π32
None of these
∫- π3π3xsinxcos2xdx is :
134π + 1
4π3 - 2logtan5π12
4π3 + logtan5π12
∫tan-1x31 + x2dx is equa to :
3tan-1x2 + c
tan-1x44 + c
tan-1x4 + c
∫0πxdx1 + sinx is equal to :
- π
∫dxxx5 + 1 is equal to :
15logx5x5 + 1 + c
15logx5 + 1x5 + c
C.
Let I = ∫dxxx5 + 1⇒ I = ∫dxx6 + x = ∫1x6dx1 + x- 5Put 1 + x- 5 = t⇒ - 5x- 6dx = dt ⇒ dxx6 = - 15dt∴ I = - ∫15tdt = - 15logt + c⇒ I = - 15log1 + 1x5 + c⇒ I = - 15logx5 + 1x5 + c = 15logx5x5 + 1 + c
∫x + sinx1 + cosxdx is equal to
xtanx2 + c
xsec2x2 + c
logcosx2 + c
∫0π8cos34θdθ is equal to
53
54
13
16
∫0π2cosx - sinx1 + cosx sinx dx is equal to
0
π6