The value of the integral ∫abxdxx + a + b - x is :
π
12b - a
π/2
b - a
∫0π2cotxcotx + tanxdx is equal to :
1
- 1
π2
π4
∫0π2xsin2xcos2xdx is equal to :
π232
π216
π32
None of these
∫- π3π3xsinxcos2xdx is :
134π + 1
4π3 - 2logtan5π12
4π3 + logtan5π12
∫tan-1x31 + x2dx is equa to :
3tan-1x2 + c
tan-1x44 + c
tan-1x4 + c
∫0πxdx1 + sinx is equal to :
- π
∫dxxx5 + 1 is equal to :
15logx5x5 + 1 + c
15logx5 + 1x5 + c
∫x + sinx1 + cosxdx is equal to
xtanx2 + c
xsec2x2 + c
logcosx2 + c
∫0π8cos34θdθ is equal to
53
54
13
16
D.
We have,I = ∫0π8cos34θdθ = ∫0π8cos24θcos4θdθ = ∫0π81 + cos8θ2dθ = 12∫0π8cos4θdθ + 12∫0π8cos8θcos4θdθ = 12sin4θ40π8 + I1 ...iNow, I1 = 12∫0π8cos8θcos4θdθ = 12cos8θsin4θ40π8 - 12∫0π8- 8cos8θsin4θ4dθ = - 18 + ∫0π8sin8θsin4θdθ = - 18 + sin8θ- cos4θ40π8 - 12∫0π88cos8θ- cos4θ4dθ = - 18 + 0 + 2∫0π8cos8θcos4θdθ I1 = - 18 + 4I1Now, I1 = 1/24 ...iiFrom Eqs. (i) and (ii), we getI = 18 + 124 = 3 + 124 = 424 = 16
∫0π2cosx - sinx1 + cosx sinx dx is equal to
0
π6