∫0π4log1 + tanxdx is equal to
π8loge2
π4log2e
π4loge2
π8loge12
∫x3 + 3x2 + 3x + 1x + 15dx is equal to
- 1x + 1 + c
15logx + 1 + c
logx + 1 + c
tan-1x + c
A.
Let I = ∫x3 + 3x2 + 3x + 1x + 15dx = ∫x + 13x + 15dx = ∫1x + 12dx = - 1x + 1 + c
∫cscxcos21 + logtanx2dx is equal to :
sin21 + logtanx2 + c
tan1 + logtanx2 + c
sec21 + logtanx2 + c
- tan1 + logtanx2 + c
∫dxxx6 - 16 is equa to :
13sec-1x34 + c
cosh-1x34 + c
112sec-1x34 + c
sec-1x34 + c
If I1 = I1 = ∫0π2sinxdx and I2 = ∫0π2xcosxdx, then which one of the following is true ?
I1 + I2 = π2
I2 - I1= π2
I1 + I2 = 0
I1 = I2
If f(x) is defined [- 2, 2] by f(x) = 4 - 3x + 1 and g(x) = f- x - fxx2 + 3, then ∫- 22gxdx is equal to :
64
- 48
0
24
The value of the integral ∫0π2sin100x - cos100xdx is
1100
100!100100
π100
If k∫01x . f3xdx = ∫03t . ftdt, then the value of k is
9
3
19
13
The value of ∫11 + cos8xdx is
tan2x8 + c
tan8x8 + c
tan4x4 + c
tan4x8 + c
The value of ∫exx5 + 5x4 + 1dx is
ex . x5 + c
ex . x5 + ex + c
ex + 1 . x5 + c
5x4 . ex + c