The value of ∫x2 + 1x2 - 1dx is
logx - 1x + 1 + c
logx + 1x - 1 + c
x + logx - 1x + 1 + c
5x4 . ex + c
∫ex . x5dx is
ex[x5 + 5x4 + 20x3 + 60x2 + 120x + 120] + C
ex[x5 - 5x4 - 20x3 - 60x2 - 120x - 120] + C
ex[x5 - 5x4 + 20x3 - 60x2 + 120x - 120] + C
ex[x5 + 5x4 + 20x3 - 60x2 - 120x + 120] + C
The value of ∫- 22ax3 + bx + cdx depends on the
value of b
value of c
value of a
values of a and b
∫secxsecx + tanxdx is equal to
tanx - secx + C
log1 + secx + C
secx + tanx + C
logsinx - logcosx + C
If ∫fxdx = gx, then ∫fxgxdx is equal to
12f2x
12g2x
12g'x2
f'(x)g(x)
∫sinxcosx1 - sin4xdx is equal to
12sin-1sin2x + C
12cos-1sin2x + C
tan-1sin2x + C
tan-12sin2x + C
∫etan-1x1 + x1 + x2dx is equal to
xetan-1x + c
etan-1x + c
12etan-1x + c
12xetan-1x + c
∫cscx - acscxdx is equal to
- 1sinalogsinxcscx - a + c
- 1sinalogsinx - asinx + c
1sinalogsinxcscx - a + c
1sinalogsinx - asinx + c
A.
Let I = ∫cscx - acscxdx= ∫sinasinasinx - asinxdx= - 1sina∫sinx - a - xsinx - asinxdx= - 1sina∫sinx - acosx - cosx - asinxsinx - asinxdx= - 1sina∫cotx - cotx - adx= - 1sinalogsinx - logsinx - a + c= - 1sinalogsinxcscx - a + c
If f(x) = ∫- 1xtdt, then for any x ≥ 0, f(x) is equal to
1 - x2
121 + x2
1 + x2
121 - x2
∫134 - xx + 4 - xdx is equal to
1
3
2
0