In = ∫0π4tannxdx, then limn→∞nIn 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

821.

0π2tan7xcot7x + tan7xdx is equal to

  • π4

  • π2

  • π6

  • π3


822.

xsec2xdx is equal to

  • xtanx + logsecx + c

  • x22secx + logcosx + c

  • xtanx + logcosx + c

  • tanx + logcosx + c


823.

te3t2dt is equal to

  • 16e3t2 + c

  • - 16e3t2 + c

  • 16e- 3t2 + c

  • - 16e- 3t2 + c


824.

0πlogsin2xdx is equal to

  • 2πloge12

  • πloge2

  • π2loge12

  • None of these


Advertisement
825.

dxxxn + 1 is equal to

  • 1nlogxnxn + 1 + c

  • 1nlogxn + 1xn + c

  • logxnxn + 1 + c

  • None of these


826.

02x2dx is equal to

  • 2 - 2

  • 2 + 2

  • 2 - 1

  • - 2 - 3 + 5


Advertisement

827.

In = 0π4tannxdx, then limnnIn + In + 2 equals

  • 1/ 2

  • 2 sq units

  • 3 sq units

  • 4 sq uits


D.

4 sq uits

Given,   In = 0π4tannxdx In + 2 = 0π4tann + 2xdx                = 0π4tannxtan2xdx                = 0π4tannxdxsec2x - 1dx                = 0π4tannxsec2xdx - 0π4tannxdx                = 0π4tannxsec2xdx - In        In + In + 2 = tann + 1xn + 10π4 = 1n + 1limnnIn + In + 2 = limnnn + 1 = limn11 + 1n                             = 1


Advertisement
828.

010πsinxdx is equal to

  • 20

  • 8

  • 10

  • 18


Advertisement
829.

If I = x0x0 + nhydx, then by Trapezoidal rule I is equal to

  • hy0 + yn + 2y1 + y2 + ... + yn - 1

  • h12y0 + yn + 2y1 + y2 + ... + yn - 1

  • h2y0 + yn + 2y1 + y2 + ... + yn - 1

  • hy0 + yn + 2y1 + y2 + ... + yn - 1


830.

dx1 - x2 is equal to

  • tan-1x + c

  • sin-1x + c

  • 12log1 + x1 - x + c

  • 12log1 - x1 + x + c


Advertisement