∫0π2tan7xcot7x + tan7xdx is equal to
π4
π2
π6
π3
∫xsec2xdx is equal to
xtanx + logsecx + c
x22secx + logcosx + c
xtanx + logcosx + c
tanx + logcosx + c
∫te3t2dt is equal to
16e3t2 + c
- 16e3t2 + c
16e- 3t2 + c
- 16e- 3t2 + c
∫0πlogsin2xdx is equal to
2πloge12
πloge2
π2loge12
None of these
∫dxxxn + 1 is equal to
1nlogxnxn + 1 + c
1nlogxn + 1xn + c
logxnxn + 1 + c
∫02x2dx is equal to
2 - 2
2 + 2
2 - 1
- 2 - 3 + 5
In = ∫0π4tannxdx, then limn→∞nIn + In + 2 equals
1/ 2
2 sq units
3 sq units
4 sq uits
∫010πsinxdx is equal to
20
8
10
18
If I = ∫x0x0 + nhydx, then by Trapezoidal rule I is equal to
hy0 + yn + 2y1 + y2 + ... + yn - 1
h12y0 + yn + 2y1 + y2 + ... + yn - 1
h2y0 + yn + 2y1 + y2 + ... + yn - 1
∫dx1 - x2 is equal to
tan-1x + c
sin-1x + c
12log1 + x1 - x + c
12log1 - x1 + x + c
C.
∫dx1 - x2 = 12 . 1log1 + x1 - x + c = 12log1 + x1 - x + c