Intersection point of f1(x) = ∫2x2t - 5dt and f2x = ∫0x2tdt is
65, 3625
23, 49
13, 19
15, 125
The value of limn→∞∑r = 1n1nern is
e
e - 1
1 - e
1 + e
∫022 + x2 - xdx is equal to
π + 2
π + 32
π + 1
None of these
∫exsinexdx is equal to
- cosex + c
cosex + c
- cscex + c
∫ex1x - 1x2dx is equal to
- exx2 + c
exx2 + c
exx + c
- exx + c
∫1 - x1 + xdx is equal to
cos-1x + 1 - xx - 2 + c
cos-1x - 1 - xx - 2 + c
cos-1x + 1 - xx + 2 + c
None of the above
∫logx + 1 + x21 + x2dx is equal to
12logx + 1 + x22 + c
logx + 1 + x22 + c
logx + 1 + x2 + c
A.
Let I = ∫logx + 1 + x21 + x2dxPut logx + 1 + x2 = t⇒ 11 + x2dx = dt∴ I = ∫tdt = t22 + c = 12logx + 1 + x22 + c
∫sin8x - cos8x1 - 2sin2xcos2xdx is equal to
sin2x + c
- 12sin2x + c
12sin2x + c
- sin2x + c
∫dxsinx + sin2x is equal to
16log1 - cosx + 12loglog1 + cosx - 23log1 + 2cosx + c
6log1 - cosx + 2loglog1 + cosx - 23log1 + 2cosx + c
6log1 - cosx + 12loglog1 + cosx + 23log1 + 2cosx + c
∫fxg''x - f''xgxdx is equal to
fxg'x
f'(x)g(x) - f(x)g'(x)
f(x)g'(x) - f'(x)g(x)
f(x)g'(x) + f'(x)g(x)