∫dxsinx + sin2x is equal to from Mathematics

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

841.

Intersection point of f1(x) = 2x2t - 5dt and f2x = 0x2tdt is

  • 65, 3625

  • 23, 49

  • 13, 19

  • 15, 125


842.

The value of limnr = 1n1nern is

  • e

  • e - 1

  • 1 - e

  • 1 + e


843.

022 + x2 - xdx is equal to

  • π + 2

  • π + 32

  • π + 1

  • None of these


844.

exsinexdx is equal to

  • - cosex + c

  • cosex + c

  • - cscex + c

  • None of these


Advertisement
845.

ex1x - 1x2dx is equal to

  • - exx2 + c

  • exx2 + c

  • exx + c

  • - exx + c


846.

1 - x1 + xdx is equal to

  • cos-1x + 1 - xx - 2 + c

  • cos-1x - 1 - xx - 2 + c

  • cos-1x + 1 - xx + 2 + c

  • None of the above


847.

logx + 1 + x21 + x2dx is equal to

  • 12logx + 1 + x22 + c

  • logx + 1 + x22 + c

  • logx + 1 + x2 + c

  • None of the above


848.

sin8x - cos8x1 - 2sin2xcos2xdx is equal to

  • sin2x + c

  • - 12sin2x + c

  • 12sin2x + c

  • - sin2x + c


Advertisement
Advertisement

849.

dxsinx + sin2x is equal to

  • 16log1 - cosx + 12loglog1 + cosx - 23log1 + 2cosx + c

  • 6log1 - cosx + 2loglog1 + cosx - 23log1 + 2cosx + c

  • 6log1 - cosx + 12loglog1 + cosx + 23log1 + 2cosx + c

  • None of the above


A.

16log1 - cosx + 12loglog1 + cosx - 23log1 + 2cosx + c

Let I = dxsinx + sin2x       = dxsinx + 2sinxcosx       = dxsinx1 + 2cosx       = sinxdx1 - cosx1 + cosx1 + 2cosxPut cosx = t and sinxdx = - dt I = - dt1 - t1 +t1 + 2t       = - 161 - t - 121 + t + 431 + 2tdt       = - - 16log1 - t - 12log1 +t + 46log1 +2t + c       = 16log1 - cosx + 12loglog1 + cosx            - 23log1 + 2cosx + c


Advertisement
850.

fxg''x - f''xgxdx is equal to

  • fxg'x

  • f'(x)g(x) - f(x)g'(x)

  • f(x)g'(x) - f'(x)g(x)

  • f(x)g'(x) + f'(x)g(x)


Advertisement