∫0π2logsinxdx is equal to from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

851.

Correct value of 0πsin4xdx is

  • 8π3

  • 2π3

  • 4π3

  • 3π8


Advertisement

852.

0π2logsinxdx is equal to

  • - π2log2

  • πlog12

  • - π2log12

  • log2


A.

- π2log2

Let I = 0π2logsinxdx             ...i= 0π2logsinπ2 - xdx I = 0π2logcosxdx         ...iiOn adding Eqs. (i) and (ii), we get2I = 0π2log2sinxcosx - log2dx    = 0π2logsin2xdx - 0π2log2dx    = 0πlogsinxdx - 0π2log2dx    = 0π2logsinxdx - log2x0π2    = - π2log2 - log2π2 - 0 I = - π2log2


Advertisement
853.

0πcos3xdx is equal to

  • - 1

  • 0

  • 1π

  • 1


854.

Suppose f is such that f(- x) = - f(x), for every x and 01fxdx = 5, then - 10ftdt is equal to

  • 10

  • 5

  • 0

  • - 5


Advertisement
855.

Withthehelp of Trapezoidal rule fornumerical integration and the following table
x 0 0.25 0.50 0.75 1
f(x) 0 0.625 0.2500 0.5625 1

the value of 01fxdx is

  • 0.35342

  • 0.34375

  • 0.34457

  • 0.33334


856.

0π2xsinx . cosxcos4x + sin4xdx is equal to

  • π28

  • π216

  • 1

  • 0


857.

Use Simpson's 13 rule to find the value of 15fxdx given,
x 1 2 3 4 5
y 10 50 70 80 100

  • 140.88

  • 256.66

  • 160.26

  • None of these


858.

x + sinx1 + cosxdx is equal to

  • xlog1 + cosx + c

  • 1xlog1 + cosx + c

  • xtanx2 + c

  • x2tan-1x2 + c


Advertisement
859.

The value of cosxxdx will be

  • 2sinx + c

  • 2cosx + c

  • 2sinx + c

  • 2sinx + c


860.

The value of 23x5 - x + xdx will be

  • 32

  • 12

  • 12

  • 13


Advertisement