∫0π2xsinx . cosxcos4x + sin4xdx i

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

851.

Correct value of 0πsin4xdx is

  • 8π3

  • 2π3

  • 4π3

  • 3π8


852.

0π2logsinxdx is equal to

  • - π2log2

  • πlog12

  • - π2log12

  • log2


853.

0πcos3xdx is equal to

  • - 1

  • 0

  • 1π

  • 1


854.

Suppose f is such that f(- x) = - f(x), for every x and 01fxdx = 5, then - 10ftdt is equal to

  • 10

  • 5

  • 0

  • - 5


Advertisement
855.

Withthehelp of Trapezoidal rule fornumerical integration and the following table
x 0 0.25 0.50 0.75 1
f(x) 0 0.625 0.2500 0.5625 1

the value of 01fxdx is

  • 0.35342

  • 0.34375

  • 0.34457

  • 0.33334


Advertisement

856.

0π2xsinx . cosxcos4x + sin4xdx is equal to

  • π28

  • π216

  • 1

  • 0


B.

π216

Let I = 0π2xsinx . cosxcos4x + sin4xdx            ...i  I = 0π2π2 - xsinx . cosxsin4x + cos4x    ...iiOn adding Eqs. (i) and (ii), we get2I = π20π2sinx . cosxcos4x + sin4xdx I = π20π2sinx . cosx1 + tan4xdx dividing Nr and Dr by cos4xPut, tan2x = t  2tanxsec2xdx = dt I = π40121 + t2dt       = π8tan-1t0       = π8 × π2       = π216


Advertisement
857.

Use Simpson's 13 rule to find the value of 15fxdx given,
x 1 2 3 4 5
y 10 50 70 80 100

  • 140.88

  • 256.66

  • 160.26

  • None of these


858.

x + sinx1 + cosxdx is equal to

  • xlog1 + cosx + c

  • 1xlog1 + cosx + c

  • xtanx2 + c

  • x2tan-1x2 + c


Advertisement
859.

The value of cosxxdx will be

  • 2sinx + c

  • 2cosx + c

  • 2sinx + c

  • 2sinx + c


860.

The value of 23x5 - x + xdx will be

  • 32

  • 12

  • 12

  • 13


Advertisement