If ∫sin2tan-11 - x1 + xdx = Asin-1x + Bx1 - x2 + C, then A + B is equal to
10
12
1
- 12
∫1e1logxdx is equal to
1e
e
21 - 1e
None of the above
limx→0∫0x2sintdtx3 is equal to
23
13
0
∞
A.
limx→0∫0x2sintdtx3= limx→0sinx × 2x3x2 using L hospital's rule= limx→023sinxx = 23 × 1= 23
By trapezoidal rule, the approximate value of the integral ∫06dx1 + x2 is
1.3128
1.4108
1.4218
None of these
The value of the integral I = ∫tanx + cotxdx, where x ∈ 0, π2, is
2sin-1cosx - sinx + C
2sin-1sinx - cosx + C
2sin-1cosx + sinx + C
- 2sin-1sinx + cosx + C
The value of ∫0lnπ2cosex2xex2dx is
1 + sin(1)
1 - sin(1)
(sin(1) - 1
If f(x) = ∫2xdt1 + t4 and g is the inverse of f. Then, the value of g'(0) is
17
∫0100ex - xdx is equal to
50(e - 1)
75(e - 1)
90(e - 1)
100(e - 1)
By Simpson's 13rd rule, the approximate value of the integral ∫12e- x2dx using four intervals, is
0.377
0.487
0.477
0.387
For n = 4, using trapezoidal rule, the value of ∫02dx1 + x will be
1.116625
1.1176
1.1180