By trapezoidal rule, the approximate value of the integral &

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

881.

If sin2tan-11 - x1 + xdx = Asin-1x + Bx1 - x2 + C, then A + B is equal to

  • 10

  • 12

  • 1

  • - 12


882.

1e1logxdx is equal to

  • 1e

  • e

  • 21 - 1e

  • None of the above


883.

limx00x2sintdtx3 is equal to

  • 23

  • 13

  • 0


Advertisement

884.

By trapezoidal rule, the approximate value of the integral 06dx1 + x2 is

  • 1.3128

  • 1.4108

  • 1.4218

  • None of these


B.

1.4108

Given that,        I = 06dx1 + x2       ...iFrom Eq.(i), fx = 11 + x2Now, divide the interval [0, 6] into six parts each of width       h = 6 - 06 = 1

The value of f(x) are given below

x 0 1 2 3 4 5 6
f(x) 1 0.5 0.2 0.1 0.0588 0.0385 0.027

The trapezoidal rule is

        x0x0 + nhydx = h2y0 + yn + 2y1 + y2 + y3 + ... + yn - 1 0611 +x2dx = 121 + 0.027 + 20.5 + 0.2 + 0.1 + 0.0588 + 0.0385                           = 121.027 + 20.8973                           = 121.027 + 1.7946                           = 122.8216 = 1.4108


Advertisement
Advertisement
885.

The value of the integral I = tanx + cotxdx, where x  0, π2, is

  • 2sin-1cosx - sinx + C

  • 2sin-1sinx - cosx + C

  • 2sin-1cosx + sinx + C

  • - 2sin-1sinx + cosx + C


886.

The value of 0lnπ2cosex2xex2dx is

  • 1

  • 1 + sin(1)

  • 1 - sin(1)

  • (sin(1) - 1


887.

If f(x) = 2xdt1 + t4 and g is the inverse of f. Then, the value of g'(0) is

  • 1

  • 17

  • 17

  • None of the above


888.

0100ex - xdx is equal to

  • 50(e - 1)

  • 75(e - 1)

  • 90(e - 1)

  • 100(e - 1)


Advertisement
889.

By Simpson's 13rd rule, the approximate value of the integral 12e- x2dx using four intervals, is

  • 0.377

  • 0.487

  • 0.477

  • 0.387


890.

For n = 4, using trapezoidal rule, the value of 02dx1 + x will be

  • 1.116625

  • 1.1176

  • 1.1180

  • None of these


Advertisement