Evaluate ∫- 21fxdx, where f(x) = 1 - 2x, x ≤ 01 + 2x, x ≥ 0
0
2
4
6
∫dxxx + 9 is equal to
23tan-1x + C
23tan-1x3 + C
tan-1x + C
tan-1x3 + C
∫x + 12exdx is equal to
xex + C
x2xx + C
(x + 1)ex + C
(x2 + 1)ex + C
∫dxa2sin2x + b2cos2x is equal to
1abtan-1atanxb + C
tan-1atanxb + C
1abtan-1btanxa + C
tan-1btanxa + C
∫0π2sin8xcos2xdx is equal to
π512
3π512
5π512
7π512
∫- 11ax3 + bxdx = 0 for
any value of a and b
a > 0, b > 0 only
a < 0, b > 0 only
Using the Trapezoidal rule, the approximate value of ∫14ydx
0.1833
1.1833
2.1833
3.1833
∫dx1 - cosx - sinx is equal to
log1 + cotx2 + c
log1 - tanx2 + c
log1 - cotx2 + c
log1 + tanx2 + c
C.
We have,I = ∫dx1 - cosx - sinx = ∫dx1 - 1 - tan2x21 + tan2x2 - 2tanx21 + tan2x2 = ∫sec2x2dx1 + tan2x2 + tan2x2 - 2tanx2 = 12∫sec2x2dxtanx2tanx2 - 1Let tanx2 = z⇒ 12sec2x2dx = dz⇒ sec2x2dx =2dz∴ I = 12∫2dzzz - 1 = ∫1z - 1 - 1z = logz - 1 - logz + c =logz - 1z + c = logtanx2 - 1tanx2 + C = log1 - cotx2 + c
∫dx7 + 5cosx is equal to
13tan-113tanx2 + c
16tan-116tanx2 + c
17tan-1tanx2 + c
14tan -1tanx2 + c
∫3xdx9x - 1 is equal to
1log3log3x + 9x - 1 + c
1log3log3x - 9x - 1 + c
1log9log3x + 9x - 1 + c
1log3log9x + 9x - 1 + c