Let f(x) be a differentiable function and f'(4) = 5. Thenlimx&rar

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

111.

limx11 + x2 + x1 - x1 - x is equal to

  • 1

  • does not exist

  • 23

  • ln2


112.

The value of limnn + 1 + n + 2 + ... + 2n - 1n32 is

  • 2322 - 1

  • 232 - 1

  • 232 + 1

  • 2322 + 1


113.

Let Xn = 1 - 1321 - 1621 - 1102 ... 1 - 1nn + 12, n  2

Then, the value of limnxn is

  • 1/3

  • 1/9

  • 1/81

  • 0


114.

limn1 + 2 + ... + n - 1nn is equal to

  • 12

  • 13

  • 23

  • 0


Advertisement
115.

Let f: R  R be differentiable at x = 0. If f(0) = 0 and f'(0) = 2, then the value of

limx01xf(x) + f(2x) + f(3x) + ... + f(2015x) is

  • 2015

  • 0

  • 2015 × 2016

  • 2015 × 2014


116.

If limx02asinx - sin2xtan3x exists and is equal to 1, then the value of α is

  • 2

  • 1

  • 0

  • - 1


Advertisement

117.

Let f(x) be a differentiable function and f'(4) = 5. Then

limx2f4 - fx2x - 2 equals

  • 0

  • 5

  • 20

  • - 20


D.

- 20

Given, f'(4) = 5

Now, limx2f4 - fx2x - 2             00 form= limx2 0 - f'(x2) . 2x1= - f'(4) . 2 × 21= - 5 × 4= - 20


Advertisement
118.

Let [x] denote the greatest integer less than or equal to x for any real number x. Then,

limnn2n is equal to

  • 0

  • 2

  • 2

  • 1


Advertisement
119.

The limit of 1x2 + 2013xex - 1 - 1ex - 1 as x  0

  • approaches + 

  • approaches - 

  • is equal to loge2013

  • does not exist


120.

The limit of 1x1 + x - 1 + 1x2 as x  0

  • does not exist

  • is equal to 12

  • is equal to 0

  • is equal to 1


Advertisement