limx→11 + x2 + x1 - x1 - x is equal to
1
does not exist
23
ln2
The value of limn→∞n + 1 + n + 2 + ... + 2n - 1n32 is
2322 - 1
232 - 1
232 + 1
2322 + 1
Let Xn = 1 - 1321 - 1621 - 1102 ... 1 - 1nn + 12, n ≥ 2
Then, the value of limn→∞xn is
1/3
1/9
1/81
0
limn→∞1 + 2 + ... + n - 1nn is equal to
12
13
Let f: R → R be differentiable at x = 0. If f(0) = 0 and f'(0) = 2, then the value of
limx→01xf(x) + f(2x) + f(3x) + ... + f(2015x) is
2015
2015 × 2016
2015 × 2014
If limx→02asinx - sin2xtan3x exists and is equal to 1, then the value of α is
2
- 1
Let f(x) be a differentiable function and f'(4) = 5. Then
limx→2f4 - fx2x - 2 equals
5
20
- 20
Let [x] denote the greatest integer less than or equal to x for any real number x. Then,
limn→∞n2n is equal to
The limit of 1x2 + 2013xex - 1 - 1ex - 1 as x → 0
approaches + ∞
approaches - ∞
is equal to loge2013
A.
limx→01x2 + 2013xex - 1 - 1ex - 1= limx→01x2 + 2013x - 1ex - 1= limx→01x2 + 2013x - 1x . xex - 1= limx→01x2 + limx→02013x - 1ex - 1 . limx→0xex - 1= + ∞ + log2013 . 1= + ∞
The limit of 1x1 + x - 1 + 1x2 as x → 0
is equal to 12
is equal to 0
is equal to 1