If  then the difference between the maximum and minimum values

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

631.

Let α, β be such that π < α - β < 3π. If sinα + sinβ = -21/65 and cosα + cosβ = -27/65, then the value of cos α-β/2 is

  • negative fraction numerator 3 over denominator square root of 130 end fraction
  • fraction numerator 1 over denominator square root of 130 end fraction
  • 6/65

  • 6/65

204 Views

Advertisement

632.

If straight u space equals space square root of straight a squared cos squared space straight theta space plus straight b squared space sin squared space straight theta end root space plus space square root of straight a squared space sin squared space straight theta space plus space straight b squared space cos squared space straight theta end root then the difference between the maximum and minimum values of 2 u is given by

  • 2(a2 + b2)

  • 2(a2-b2)

  • (a+b)2

  • (a+b)2


D.

(a+b)2

space straight u space equals space square root of straight a squared space cos space squared space straight theta space plus straight b squared space sin space squared space straight theta space end root space plus space square root of straight a squared space sin squared space straight theta space plus straight b squared space cos squared space straight theta end root
space equals space square root of fraction numerator straight a squared space plus straight b squared over denominator 2 end fraction plus fraction numerator straight a squared minus straight b squared over denominator 2 end fraction space cos space 2 straight theta end root space plus space square root of fraction numerator straight a squared plus straight b squared over denominator 2 end fraction plus fraction numerator straight b squared minus straight a squared over denominator 2 end fraction space cos space 2 straight theta end root
rightwards double arrow space straight u squared space equals space straight a squared space plus straight b squared space plus 2 square root of open parentheses fraction numerator straight a squared space plus straight b squared over denominator 2 end fraction close parentheses squared minus open parentheses fraction numerator straight a squared minus straight b squared over denominator 2 end fraction close parentheses space cos squared space 2 straight theta end root
min space value space of space straight u squared space equals space straight a squared space plus straight b squared space plus 2 ab
max space value space of space straight u squared space equals space 2 left parenthesis straight a squared plus straight b squared right parenthesis
rightwards double arrow space straight u subscript max superscript 2 space minus straight u subscript min superscript 2 space equals space left parenthesis straight a minus straight b right parenthesis squared
118 Views

Advertisement
633.

The sides of a triangle are sinα, cosα and square root of 1 plus space sin space straight alpha space cos space straight alpha end root for some 0 < α < π/2 . Then the greatest angle of the triangle is

  • 60o

  • 120o

  • 360o

  • 360o

156 Views

634.

A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is 60o and when he retires 40 meters away from the tree the angle of elevation becomes 30o. The breadth of the river is

  • 20 m

  • 30 m

  • 40 m

  • 40 m

108 Views

Advertisement
635.

The equation sin x(sin(x) + cos(x)) = k has real solutions, where k is a real number. Then,

  • 0  k  1 + 22

  • 2 - 3  k  2 + 3

  • 0  k  2 - 3

  • 1 - 22  k  1 + 22


636.

The cosine of the angle between any two diagonals of a cube is

  • 13

  • 12

  • 23

  • 13


637.

The value of cos15°cos71°2sin71°2 is

  • 12

  • 18

  • 14

  • 116


638.

If z = sinθ - icosθ, then for any integer n,

  • zn +1zn = 2cos2 - 

  • zn +1zn = 2sin2 - 

  • zn -1zn = 2isin  - 2

  • zn -1zn = 2icos2 - 


Advertisement
639.

The minimum value of cosθ + sinθ + 2sinθ for θ  0, π2

  • 2 + 2

  • 2

  • 1 + 2

  • 22


640.

If cot2x3 + tanx3 = csckx3, then the value of k is

  • 1

  • 2

  • 3

  • - 1


Advertisement