cos2π7 + cos4π7 + cos6π7 from Mathe

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

651.

cos2π7 + cos4π7 + cos6π7

  • is equal to zero

  • lies between 0 and 3

  • is a negative number

  • lies between 3 and 6


C.

is a negative number

Let 2πr7 = θ                     4θ = 2πr - 3θ                   sin4θ = sin2πr - 3θ              sin4θ = - sin3θ 2sin2θcos2θ = - 3sinθ - 4sin3θ 2 × 2sinθcosθ2cos2θ - 1                              = - 3sinθ + 4sin3θ sinθ8cos3θ - 4cosθ + 3 - 41 - cos2θ = 0 8cos3θ + 4cos2θ - 4cosθ - 1 = 0          ...(i)

Thus, cos2π7, cos4π7 and cos6π7 are the roots of above equation.

 cos2π7 + cos4π7 + cos6π7 = - 12


Advertisement
652.

The minimum value of 2sinx + 2cosx is

  • 21 - 1/2

  • 21 + 1/2

  • 22

  • 2


653.

If p = cosπ4- sinπ4sinπ4cosπ4 and X = 1212. Then, p3X is equal to

  • 01

  • - 1212

  • - 10

  • - 12- 12


654.

For 0  P, Q  π2, if sinP + cosQ = 2, then the value of tanP + Q2 is equal to

  • 1

  • 12

  • 12

  • 32


Advertisement
655.

The value of

cos275° + cos245° + cos215° - cos230° - cos260° is

  • 0

  • 1

  • 12

  • 14


656.

The maximum and minimum values of cos6θ + sin6θ  are respectively

  • 1 and 14

  • 1 and 0

  • 2 and 0

  • 1 and 12


657.

Let fθ = 1 + sin2θ2 - sin2θ. Then, for all values of θ

  • fθ > 94

  • f(θ) < 2

  • fθ > 114

  • 2  f(θ)  94


658.

If P, Q and R are angles of an isosceles triangle and P = π2,  then the value of

cosP3 - isinP33 + cosQ + isinQcosR - isinR        + cosP - isinPcosQ - isinQcosR - isinR

  • i

  • - i

  • 1

  • - 1


Advertisement
659.

If fx = sinx + 2cos2x, π4  x  3π4. Then, f attains its

  • minimum at x = π4

  • maximum at x = π2

  • minimum x = π2

  • mamum at x = sin-114


660.

If sin2θ + 3cosθ = 2 then cos3θ + sec3θ is equal to

  • 1

  • 4

  • 9

  • 18


Advertisement