The maximum and minimum values of cos6θ + si

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

651.

cos2π7 + cos4π7 + cos6π7

  • is equal to zero

  • lies between 0 and 3

  • is a negative number

  • lies between 3 and 6


652.

The minimum value of 2sinx + 2cosx is

  • 21 - 1/2

  • 21 + 1/2

  • 22

  • 2


653.

If p = cosπ4- sinπ4sinπ4cosπ4 and X = 1212. Then, p3X is equal to

  • 01

  • - 1212

  • - 10

  • - 12- 12


654.

For 0  P, Q  π2, if sinP + cosQ = 2, then the value of tanP + Q2 is equal to

  • 1

  • 12

  • 12

  • 32


Advertisement
655.

The value of

cos275° + cos245° + cos215° - cos230° - cos260° is

  • 0

  • 1

  • 12

  • 14


Advertisement

656.

The maximum and minimum values of cos6θ + sin6θ  are respectively

  • 1 and 14

  • 1 and 0

  • 2 and 0

  • 1 and 12


A.

1 and 14

Let fθ = sin6θ + cos6θ fθ = sin2θ3 + cos2θ3            = sin2θ + sin2θsin4θ +cos4θ  - sin2θ . cos2θ                     a3 + b3 = a + ba2 + b2 - ab            = 1 . sin2θ + sin2θ2 - 3sin2θ . cos2θ            = 1 . 1 - 34 . 4sin2θ . cos2θ            = 1 - 34sin2θ2              sin2A = 2sinAcosA            = 1 - 381 - cos4θ      fθ = 1 - 38 + 38 . cos4θ - 1  cos4θ  1

 - 38  38cos4θ  38 58 - 38  58 + 38cos4θ  58 + 38 14  f(θ)  1      from Eq. (i)So, the maximum value is 1 and minimum value is 14


Advertisement
657.

Let fθ = 1 + sin2θ2 - sin2θ. Then, for all values of θ

  • fθ > 94

  • f(θ) < 2

  • fθ > 114

  • 2  f(θ)  94


658.

If P, Q and R are angles of an isosceles triangle and P = π2,  then the value of

cosP3 - isinP33 + cosQ + isinQcosR - isinR        + cosP - isinPcosQ - isinQcosR - isinR

  • i

  • - i

  • 1

  • - 1


Advertisement
659.

If fx = sinx + 2cos2x, π4  x  3π4. Then, f attains its

  • minimum at x = π4

  • maximum at x = π2

  • minimum x = π2

  • mamum at x = sin-114


660.

If sin2θ + 3cosθ = 2 then cos3θ + sec3θ is equal to

  • 1

  • 4

  • 9

  • 18


Advertisement