If the vectors a, b and c are coplanar, thenabca . aa&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

541.

Volume of the parallelopiped having vertices at 0 = (0, 0, 0), A = (2, - 2, 1), B = (5, - 4, 4) and C = (1, - 2, 4) is

  • 5 cu unit

  • 10 cu unit

  • 15 cu unit

  • 20 cu unit


542.

If a, b, c are three non-coplanar vectors and p, q, r are defined by the relations

p = b ×  ca b c, q = c ×  aa b c and r = b ×  aa b c

then a . p + b . q + c . r is equl to

  • 0

  • 1

  • 2

  • 3


543.

The volume of a parallelopiped whose coterminous edges are  2a, 2b, 2c is

  • 2a b c

  • 4a b c

  • 8a b c

  • a b c


544.

The position vectors of vertices of a ABC are 4i^ - 2j^, i^ + 4j^ - 3k^ and - i^ + 5j^+ k^ respectively, then ABC is equal to

  • π6

  • π4

  • π3

  • π2


Advertisement
545.

If u = a - b and v = a + b and a = b = 2, then u × v is equal to

  • 216 - a . b2

  • 16 - a . b2

  • 24 - a . b2

  • 24 + a . b2


Advertisement

546.

If the vectors a, b and c are coplanar, then

abca . aa . ba . cb . ab . bb . c is equal to

  • 1

  • 0

  • - 1

  • None of these


B.

0

Since, a, b and c are coplanar, there must exists three scalars x, y and z are not all zero such that

              xa + yb + zc = 0    ...(i)

Multiplying both sides of Eq. (i) by a and b respectively, we get

xa . a + ya . b + za . c = 0    ...(ii)
xb . a + yb . b + zb . c = 0    ...(ii)

Eliminating x, y and z from Eqs. (i), (ii) and (iii), we get

abca . aa . ba . cb . ab . bb . c = 0


Advertisement
547.

If the position vectors of the vertices A, B and C are 6i, 6j and k respectively w.r.t. origin 0, then the volume of the tetrahedron OABC is

  • 6

  • 3

  • 16

  • 13


548.

If three vectors 2i - j - k, i + 2j - 3k and 3i + λj + 5k are coplanar, then the value of λ is

  • - 4

  • - 2

  • - 1

  • - 8


Advertisement
549.

The vector perpendicular to the vectors 4i - j + 3k and - 2i + j - 2k whose magnitude is 9

  • 3i + 6j - 6k

  • 3i - 6j + 6k

  • - 3i + 6j + 6k

  • None of the above


550.

i . j × k + j . k × i + k . j × i is equal to

  • 3

  • 2

  • 1

  • 0


Advertisement