The vector perpendicular to the vectors 4i - j + 3k and - 2i + j

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

541.

Volume of the parallelopiped having vertices at 0 = (0, 0, 0), A = (2, - 2, 1), B = (5, - 4, 4) and C = (1, - 2, 4) is

  • 5 cu unit

  • 10 cu unit

  • 15 cu unit

  • 20 cu unit


542.

If a, b, c are three non-coplanar vectors and p, q, r are defined by the relations

p = b ×  ca b c, q = c ×  aa b c and r = b ×  aa b c

then a . p + b . q + c . r is equl to

  • 0

  • 1

  • 2

  • 3


543.

The volume of a parallelopiped whose coterminous edges are  2a, 2b, 2c is

  • 2a b c

  • 4a b c

  • 8a b c

  • a b c


544.

The position vectors of vertices of a ABC are 4i^ - 2j^, i^ + 4j^ - 3k^ and - i^ + 5j^+ k^ respectively, then ABC is equal to

  • π6

  • π4

  • π3

  • π2


Advertisement
545.

If u = a - b and v = a + b and a = b = 2, then u × v is equal to

  • 216 - a . b2

  • 16 - a . b2

  • 24 - a . b2

  • 24 + a . b2


546.

If the vectors a, b and c are coplanar, then

abca . aa . ba . cb . ab . bb . c is equal to

  • 1

  • 0

  • - 1

  • None of these


547.

If the position vectors of the vertices A, B and C are 6i, 6j and k respectively w.r.t. origin 0, then the volume of the tetrahedron OABC is

  • 6

  • 3

  • 16

  • 13


548.

If three vectors 2i - j - k, i + 2j - 3k and 3i + λj + 5k are coplanar, then the value of λ is

  • - 4

  • - 2

  • - 1

  • - 8


Advertisement
Advertisement

549.

The vector perpendicular to the vectors 4i - j + 3k and - 2i + j - 2k whose magnitude is 9

  • 3i + 6j - 6k

  • 3i - 6j + 6k

  • - 3i + 6j + 6k

  • None of the above


C.

- 3i + 6j + 6k

Let a = 4i - j + 3k, b = - 2i + j - 2k and c = xi + yj + zk

Given, a . c = 0

i.e.,   4x - y + 3z = 0        ...(i)

and b . c = 0

i.e.,   2x + y - 2z = 0       ...(ii)

Also, c = 9

i.e., x2 + y2 + z2 = 81    ...(iii)

Now, from Eqs. (i) and (ii), we get

  2x + z = 0  z = - 2x

On putting this value in Eq. (iii), we get

    x2 + y2 + 4x2 = 81

⇒         5x2 + y2 = 81     ...(iv)

On multiplying Eq. (i) by 2 and Eq. (ii) by 3 and then adding, we get

     8x - 12y + 6z = 0- 6x + 3y - 65z = 0     2x + y = 0         y = - 2x

On putting this value in Eq. (iv), we get

5x2 + 4x2 = 81

 9x2 = 81   x2 = 9    x = ± 3    y =  6 and z =  6 Required vector, c = xi + yj + zk          = ± 3i  6j  6k          = 3i - 6j - 6k                  or         = - 3i + 6j + 6k


Advertisement
550.

i . j × k + j . k × i + k . j × i is equal to

  • 3

  • 2

  • 1

  • 0


Advertisement