A plane x passes through the point (1, 1, 1). If b, c, a are the

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

81.

A random variable X takes the values 0, 1 and 2. If P(X = 1) = P(X = 2) and P(X = 0) = 0.4, then the mean of the random variable X is

  • 0.2

  • 0.7

  • 0.5

  • 0.9


82.

The acute angle between the two lines whose direction ratios are given by l + m - n = 0 and  l2 + m2 + n2 = 0, is

  • 0

  • π6

  • π4

  • π3


83.

The direction ratios of normal to the plane passing through (0, 0, 1), (0, 1, 2) and (1, 0, 3) are

  • (2, 1, - 1)

  • (1, 0, 1)

  • (0, 0, - 1)

  • (1, 0, 0)


84.

If P = (0, 1, 0), Q = (0, 1, 0), then the projection of PQ on the plane x + y + z = 3 is

  • 2

  • 2

  • 3

  • 3


Advertisement
85.

In the space the equation by + cz + d = 0 represents a plane perpendicular to the

  • YOZ-plane

  • ZOX-plane

  • XOY-plane

  • None of these


Advertisement

86.

A plane x passes through the point (1, 1, 1). If b, c, a are the direction ratios of a normal to the plane, where a, b, c (a < b < c) are the factors of 2001, then the equation of plane is 

  • 29x + 31y + 3z = 63

  • 23x + 29y - 29z = 23

  • 23x + 29y + 3z = 55

  • 31x + 37y + 3z = 71


C.

23x + 29y + 3z = 55

We have,

2001 = 3, 23, 29

so, a = 3, b = 23, c = 29

Since,direction ratios of a normal are b, c, a then the equation of plane is 

           bx + cy + az +d = 0 23x + 29y + 3z +d = 0It passes through 1, 1, 1 23 + 29 + 3 + d =0                 55 + d = 0                          d = - 55Thus, equation of the plane is23x + 29y +3z - 55 = 0     23x +29y + 3z = 55


Advertisement
87.

If the plane 7x + 11y + 13z = 3003 meets the co-ordinate axes in A, B, C, then the centroid of the ABC is

  • (143, 91, 77)

  • (143, 77, 91)

  • (91, 143, 77)

  • (143, 66, 91)


88.

dx1 - cosx  - sinx is equal to

  • log1 + cotx2 + c

  • log1 -  tanx2 + c

  • log1 - cotx2 + c

  • log1 + tanx2 + c


Advertisement
89.

dx7 + 5cosx is equal to

  • 13tan-113tanx2 + c

  • 16tan-116tanx2 + c

  • 17tan-1tanx2 + c

  • 14tan -1tanx2 + c


90.

3xdx9x - 1 is equal to

  • 1log3log3x + 9x - 1 + c

  • 1log3log3x - 9x - 1 + c

  • 1log9log3x + 9x - 1 + c

  • 1log3log9x + 9x - 1 + c


Advertisement