If the plane 7x + 11y + 13z = 3003 meets the co-ordinate axes in

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

81.

A random variable X takes the values 0, 1 and 2. If P(X = 1) = P(X = 2) and P(X = 0) = 0.4, then the mean of the random variable X is

  • 0.2

  • 0.7

  • 0.5

  • 0.9


82.

The acute angle between the two lines whose direction ratios are given by l + m - n = 0 and  l2 + m2 + n2 = 0, is

  • 0

  • π6

  • π4

  • π3


83.

The direction ratios of normal to the plane passing through (0, 0, 1), (0, 1, 2) and (1, 0, 3) are

  • (2, 1, - 1)

  • (1, 0, 1)

  • (0, 0, - 1)

  • (1, 0, 0)


84.

If P = (0, 1, 0), Q = (0, 1, 0), then the projection of PQ on the plane x + y + z = 3 is

  • 2

  • 2

  • 3

  • 3


Advertisement
85.

In the space the equation by + cz + d = 0 represents a plane perpendicular to the

  • YOZ-plane

  • ZOX-plane

  • XOY-plane

  • None of these


86.

A plane x passes through the point (1, 1, 1). If b, c, a are the direction ratios of a normal to the plane, where a, b, c (a < b < c) are the factors of 2001, then the equation of plane is 

  • 29x + 31y + 3z = 63

  • 23x + 29y - 29z = 23

  • 23x + 29y + 3z = 55

  • 31x + 37y + 3z = 71


Advertisement

87.

If the plane 7x + 11y + 13z = 3003 meets the co-ordinate axes in A, B, C, then the centroid of the ABC is

  • (143, 91, 77)

  • (143, 77, 91)

  • (91, 143, 77)

  • (143, 66, 91)


A.

(143, 91, 77)

Given plane is 7x + 11y +13z = 3003     7x3003 + 11y3003 + 13z3003 = 1           x429 + y273 + z231 = 1This plane meets the coordinate axes.The coordinates are A429, 0 ,0, B0, 273, 0, C0, 0, 231The centroid of ABC =4293, 2732, 2313                                    = 143, 91, 77


Advertisement
88.

dx1 - cosx  - sinx is equal to

  • log1 + cotx2 + c

  • log1 -  tanx2 + c

  • log1 - cotx2 + c

  • log1 + tanx2 + c


Advertisement
89.

dx7 + 5cosx is equal to

  • 13tan-113tanx2 + c

  • 16tan-116tanx2 + c

  • 17tan-1tanx2 + c

  • 14tan -1tanx2 + c


90.

3xdx9x - 1 is equal to

  • 1log3log3x + 9x - 1 + c

  • 1log3log3x - 9x - 1 + c

  • 1log9log3x + 9x - 1 + c

  • 1log3log9x + 9x - 1 + c


Advertisement