Find the particular solution of the differential equation  giv

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

151.

Solve the differential equation:
dy over dx space equals space straight y space sin space 2 straight x comma space space space given space that space space straight y left parenthesis 0 right parenthesis space equals space 1.

87 Views

152.

Solve the following initial value problem:
(1 + x y) y dx + (1 – x y) x dy = 0, y (1) = 1.

114 Views

Advertisement

153. Find the particular solution of the differential equation dy over dx space equals space minus 4 xy squared given that y = 1,  when x = 0.


The given differential equation is
                                         dy over dx equals negative 4 space straight x space straight y squared
Separating the variables, we get,
                     1 over straight y squared dy space equals space minus 4 straight x space dx
Integrating,   integral 1 over straight y squared dy space equals space minus 4 integral space straight x space dx space space or space space space integral space straight y to the power of negative 2 end exponent space dy space equals space minus 4 space integral space straight x space dx
therefore space space space space space space space space space space space space fraction numerator straight y to the power of negative 1 end exponent over denominator negative 1 end fraction space equals negative 4 straight x squared over 2 plus straight c
or space space space space space space space space space space space space space space space space fraction numerator negative 1 over denominator straight y end fraction space equals space minus 2 straight x squared plus straight c space space or space space space 1 over straight y space equals space 2 straight x squared minus straight c
or space space space space space space space space space space space space space space space space straight y space equals space fraction numerator 1 over denominator 2 straight x squared minus straight c end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now y = 1 when x = 0
therefore space space space space space space space space space space space space space space space space space space space space space space 1 space equals space fraction numerator 1 over denominator 0 minus straight c end fraction space space or space space space 1 space equals space 1 over straight c space space rightwards double arrow space space straight c space equals space 1
Putting c = -1 in (1), we get,
                                          straight y space equals fraction numerator 1 over denominator 2 straight x squared plus 1 end fraction comma space which space is space required space solution. space
88 Views

Advertisement
154. Find the particular solution of the differential equation
(1 + e2x ) dy + (1 + y2 ) ex dx = 0, given that y = 1 when x = 0.
91 Views

Advertisement
155. Find the solution of the equation:
            dy over dx space equals space straight e to the power of straight x plus straight y end exponent plus straight x squared space straight e to the power of straight x
subject to the condition, when x = 0;  y = 0.
88 Views

156.

Solve the differential equation;
x (1 + y2 ) dx – y (1 + x2 ) dy = 0  given that y = 0 when x = 1. 

84 Views

 Multiple Choice QuestionsLong Answer Type

157. Find the particular solution of (1 + x2 + y2 + x2 y2 ) dx + x y dy = 0
87 Views

 Multiple Choice QuestionsShort Answer Type

158. Find the particular solution of the differential equation log space open parentheses dy over dx close parentheses space equals space 3 straight x plus 4 straight y given that y = 0 when x = 0.
77 Views

Advertisement
159.

Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2 x2 + 1) dx (x ≠ 0).

78 Views

 Multiple Choice QuestionsLong Answer Type

160. Find the equation of a curve passing through the point (– 2, 3), given that the slope of the tangent to the curve at any point (x, y) is fraction numerator 2 straight y over denominator straight y squared end fraction.
82 Views

Advertisement